Quiz \# 07
Math 101-Section 08 Calculus I
25 November 2022 Friday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let P be the parabola $y=x^{2}, L_{1}$ be the line $3 y=2 x+16$, and L_{2} be the line $y=8-2 x$.
Let A be the area bounded by P and L_{1}, B be the area bounded by P and L_{2}, and C be the area that lies above P but below both L_{1} and L_{2}.
Evaluate only the integral in (iii).
(i) Find the points of intersection of P with L_{1} and L_{2} as well as the point of intersection of L_{1} with L_{2}
(ii) Write a definite integral which calculates A.
(iii) Write a definite integral which calculates B.
(iv) Write a definite integral which calculates C.

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: $5+2+1+2=10$ points.

Solution:

(i) $P \cap L_{1}=\{(-2,4),(8 / 3,64 / 9)\}, P \cap L_{2}=\{(-4,16),(2,4)\}, L_{1} \cap L_{2}=\{(1,6)\}$.
(ii)

$$
A=\int_{-2}^{8 / 3}\left[\left(\frac{2}{3} x+\frac{16}{3}\right)-\left(x^{2}\right)\right] d x
$$

(iii)

$$
B=\int_{-4}^{2}\left[(8-2 x)-\left(x^{2}\right)\right] d x=\left(8 x-x^{2}-\left.\frac{x^{3}}{3}\right|_{-4} ^{2}\right)=36 .
$$

(iv)

$$
C=\int_{-2}^{1}\left[\left(\frac{2}{3} x+\frac{16}{3}\right)-\left(x^{2}\right)\right] d x+\int_{1}^{2}\left[(8-2 x)-\left(x^{2}\right)\right] d x
$$

