

Quiz # 07 Math 101-Section 12 Calculus I 24 November 2022 Thursday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Find y which is a function of x with y(5) = 3 and satisfies the differential equation

$$y' = -\frac{1+y^2}{1+x^2}, \ x \neq \frac{7}{4}.$$

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 10 points.

Hint:
$$\int \frac{dx}{1+x^2} = \arctan x + C$$
, and $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

Solution:

$$\frac{dy}{dx} = -\frac{1+y^2}{1+x^2}$$
$$\frac{dy}{1+y^2} = -\frac{dx}{1+x^2}$$

$$\arctan y = -\arctan x + C.$$

This gives $\arctan y + \arctan x = C$. Taking $\tan of$ both sides gives

$$\frac{y+x}{1-yx} = C,$$

where C is still an arbitrary constant. Now putting in x = 5 and y = 3 we get

$$C=-\frac{4}{7},$$

and solving for y with this value of C gives

$$y = -\frac{7x+4}{7-4x}$$
, where we must have $x \neq \frac{7}{4}$.