Quiz \# 07
Math 101-Section 12 Calculus I
24 November 2022 Thursday

Instructor: Ali Sinan Sertöz

Solution Key

\qquad

Q-1) Find y which is a function of x with $y(5)=3$ and satisfies the differential equation

$$
y^{\prime}=-\frac{1+y^{2}}{1+x^{2}}, \quad x \neq \frac{7}{4}
$$

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 10 points.
Hint: $\int \frac{d x}{1+x^{2}}=\arctan x+C$, and $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{1+y^{2}}{1+x^{2}} \\
\frac{d y}{1+y^{2}} & =-\frac{d x}{1+x^{2}} \\
\arctan y & =-\arctan x+C
\end{aligned}
$$

This gives $\arctan y+\arctan x=C$. Taking tan of both sides gives

$$
\frac{y+x}{1-y x}=C
$$

where C is still an arbitrary constant. Now putting in $x=5$ and $y=3$ we get

$$
C=-\frac{4}{7}
$$

and solving for y with this value of C gives

$$
y=-\frac{7 x+4}{7-4 x}, \quad \text { where we must have } x \neq \frac{7}{4}
$$

