

Bilkent University

Quiz \# 08
Math 101-Section 08 Calculus I
2 December 2022 Friday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find the volume of the solid obtained by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ around the x-axis using two different methods: (i) disc method and (ii) cylindrical shells method. Here $a, b>0$.

Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $5+5=10$ points.

Hint: Make sure that you get the same volume in both parts. Also make sure that you get the volume of a sphere when $a=b$. ©

Solution:

(i) The disc method: If we set $y=f(x)$ for this ellipse in the upper half plane, i.e. for $y \geq 0$, then we have

$$
f(x)=\frac{b}{a} \sqrt{a^{2}-x^{2}}, \text { where } x \in[-a, a]
$$

Then the volume is given, from symmetry, as:

$$
\begin{aligned}
V & =2\left[\pi \int_{0}^{a} f(x)^{2} d x\right] \\
& =\frac{2 \pi b^{2}}{a^{2}} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x \\
& =\frac{2 \pi b^{2}}{a^{2}}\left(a^{2} x-\left.\frac{x^{3}}{3}\right|_{0} ^{a}\right) \\
& =\frac{4 \pi}{3} a b^{2} .
\end{aligned}
$$

(ii) The cylindrical shells method: If we set $x=f(y)$ for this ellipse in the right half plane, i.e. for $x \geq 0$, then we have

$$
f(y)=\frac{a}{b} \sqrt{b^{2}-y^{2}}, \text { where } y \in[-b, b]
$$

Then the volume is given, from symmetry, as:

$$
\begin{aligned}
V & =2\left[2 \pi \int_{0}^{b} y f(y) d y\right] \\
& =\frac{4 \pi a}{b} \int_{0}^{b} y \sqrt{b^{2}-y^{2}} d y \\
& =\frac{4 \pi a}{b}\left(-\left.\frac{\left(b^{2}-y^{2}\right)^{3 / 2}}{3}\right|_{0} ^{b}\right) \\
& =\frac{4 \pi}{3} a b^{2}
\end{aligned}
$$

Check that when $a=b=r$ we get the volume of a sphere with radius r.

In this problem we are revolving the shaded region around the x-axis.

