

Quiz # 08 Math 101-Section 08 Calculus I 2 December 2022 Friday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Find the volume of the solid obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ around the *x*-axis using two different methods: (i) disc method and (ii) cylindrical shells method. Here a, b > 0.

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 5+5=10 points.

Hint: Make sure that you get the same volume in both parts. Also make sure that you get the volume of a sphere when a = b. \odot

Solution:

(i) The disc method: If we set y = f(x) for this ellipse in the upper half plane, i.e. for $y \ge 0$, then we have

$$f(x) = \frac{b}{a}\sqrt{a^2 - x^2}$$
, where $x \in [-a, a]$.

Then the volume is given, from symmetry, as:

$$V = 2 \left[\pi \int_{0}^{a} f(x)^{2} dx \right]$$

= $\frac{2\pi b^{2}}{a^{2}} \int_{0}^{a} (a^{2} - x^{2}) dx$
= $\frac{2\pi b^{2}}{a^{2}} \left(a^{2}x - \frac{x^{3}}{3} \Big|_{0}^{a} \right)$
= $\frac{4\pi}{3} ab^{2}.$

(ii) The cylindrical shells method: If we set x = f(y) for this ellipse in the right half plane, i.e. for $x \ge 0$, then we have

$$f(y) = \frac{a}{b}\sqrt{b^2 - y^2}$$
, where $y \in [-b, b]$.

Then the volume is given, from symmetry, as:

$$V = 2 \left[2\pi \int_{0}^{b} yf(y)dy \right]$$

= $\frac{4\pi a}{b} \int_{0}^{b} y\sqrt{b^{2} - y^{2}}dy$
= $\frac{4\pi a}{b} \left(-\frac{(b^{2} - y^{2})^{3/2}}{3} \Big|_{0}^{b} \right)$
= $\frac{4\pi}{3}ab^{2}.$

Check that when a = b = r we get the volume of a sphere with radius r.

In this problem we are revolving the shaded region around the *x*-axis.