Bilkent University
Quiz \# 01
Math 101-Section 04 Calculus I
28 September 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find all values of a and b which make the following function continuous everywhere.

$$
f(x)= \begin{cases}a x^{3} & x<2 \\ a x^{2}+b & 2 \leq x<4 \\ x+3 b & 4 \leq x\end{cases}
$$

Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $5+5=10$ points if satisfactory explanations are provided.

Solution:

At all points except at $x=2$ and $x=4$ our function is given by a polynomial and hence is continuous. We need to check continuity only at $x=2$ and $x=4$.

At $x=2$ we must have

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{+}} f(x) \\
\lim _{x \rightarrow 2^{-}} a x^{3} & =\lim _{x \rightarrow 2^{+}}\left(a x^{2}+b\right) \\
8 a & =4 a+b,
\end{aligned}
$$

which gives $b=4 a$. Moreover at $x=4$ we must have

$$
\begin{aligned}
\lim _{x \rightarrow 4^{-}} f(x) & =\lim _{x \rightarrow 4^{+}} f(x) \\
\lim _{x \rightarrow 4^{-}}\left(a x^{2}+b\right) & =\lim _{x \rightarrow 4^{+}}(x+3 b) \\
16 a+b & =4+3 b,
\end{aligned}
$$

which gives $16 a=4+2 b$. Using the previous equality $b=4 a$ we find $a=1 / 2$ and $b=2$.
Hence the answer is $a=1 / 2$ and $b=2$ are the only values of a and b making f continuous everywhere. Here is a graph of this function:

