Bilkent University
Quiz \# 01
Math 101-Section 05 Calculus I
28 September 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find all values of a and b which make the following function continuous everywhere.

$$
f(x)= \begin{cases}a x^{2} & x<2 \\ a x+b & 2 \leq x<5 \\ x^{2}+b & 5 \leq x\end{cases}
$$

Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $5+5=10$ points if satisfactory explanations are provided.

Solution:

At all points except at $x=2$ and $x=5$ our function is given by a polynomial and hence is continuous. We need to check continuity only at $x=2$ and $x=5$.

At $x=2$ we must have

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{+}} f(x) \\
\lim _{x \rightarrow 2^{-}} a x^{2} & =\lim _{x \rightarrow 2^{+}}(a x+b) \\
4 a & =2 a+b,
\end{aligned}
$$

which gives $b=2 a$. Moreover at $x=5$ we must have

$$
\begin{aligned}
\lim _{x \rightarrow 5^{-}} f(x) & =\lim _{x \rightarrow 5^{+}} f(x) \\
\lim _{x \rightarrow 5^{-}}(a x+b) & =\lim _{x \rightarrow 5^{+}}\left(x^{2}+b\right) \\
5 a+b & =25+b,
\end{aligned}
$$

which gives $a=5$. Using the previous equality $b=2 a$ we find $b=10$.
Hence the answer is $a=5$ and $b=10$ are the only values of a and b making f continuous everywhere. Here is a graph of this function:

