Bilkent University
Quiz \# 04
Math 101-Section 05 Calculus I
19 October 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

The sides of the triangle on the right are changing as differentiable functions of time. At a particular time, say at $t=t_{0}$, we observe that $b\left(t_{0}\right)=8 \mathrm{~cm}, c\left(t_{0}\right)=5 \mathrm{~cm}$ and $\theta\left(t_{0}\right)=\pi / 3$. We also observe that at that moment side a is increasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$, side b is increasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$ and side c is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$. Find how fast θ is changing at that moment.

Hint: You may find it useful to recall the cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos \theta$.
Grading: 10 points

Solution:

From the cosine rule we find that

$$
\begin{equation*}
a(t)^{2}=b(t)^{2}+c(t)^{2}-2 b(t) c(t) \cos \theta(t), \tag{*}
\end{equation*}
$$

Substituting in the values $b\left(t_{0}\right)=8 \mathrm{~cm}, c\left(t_{0}\right)=5 \mathrm{~cm}$ and $\theta\left(t_{0}\right)=\pi / 3$ we find that

$$
a\left(t_{0}\right)=7 \mathrm{~cm}
$$

Taking derivatives of both sides of $(*)$ with respect to t we find

$$
\begin{aligned}
2 a\left(t_{0}\right) a^{\prime}\left(t_{0}\right)= & 2 b\left(t_{0}\right) b^{\prime}\left(t_{0}\right)+2 c\left(t_{0}\right) c^{\prime}\left(t_{0}\right)-2 b^{\prime}\left(t_{0}\right) c\left(t_{0}\right) \cos \theta\left(t_{0}\right)-b\left(t_{0}\right) c^{\prime}\left(t_{0}\right) \cos \theta\left(t_{0}\right) \\
& +2 b\left(t_{0}\right) c\left(t_{0}\right) \sin \theta\left(t_{0}\right) \theta^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Again putting in the given data $a\left(t_{0}\right)=7 \mathrm{~cm}, b\left(t_{0}\right)=8 \mathrm{~cm}, c\left(t_{0}\right)=5 \mathrm{~cm}, \theta\left(t_{0}\right)=\pi / 3, a^{\prime}\left(t_{0}\right)=2 \mathrm{~cm} / \mathrm{s}$, $b^{\prime}\left(t_{0}\right)=1 \mathrm{~cm} / \mathrm{s}, c^{\prime}\left(t_{0}\right)=-1 \mathrm{~cm} / \mathrm{s}$ and recalling that $\cos \pi / 3=1 / 2$ and $\sin \pi / 3=\sqrt{3} / 2$, we find that

$$
\theta^{\prime}\left(t_{0}\right)=\frac{19 \sqrt{3}}{120} \mathrm{~cm} / \mathrm{s}
$$

Hence θ is increasing at the rate of $\frac{19 \sqrt{3}}{120} \mathrm{~cm} / \mathrm{s}$ at that moment. (This is approximately $3 \mathrm{~mm} / \mathrm{s}$.)

