

Bilkent University

Quiz # 04 Math 101-Section 05 Calculus I 19 October 2023 Thursday Instructor: Ali Sinan Sertöz Solution Key

Q-1)

The sides of the triangle on the right are changing as differentiable functions of time. At a particular time, say at $t = t_0$, we observe that $b(t_0) = 8$ cm, $c(t_0) = 5$ cm and $\theta(t_0) = \pi/3$. We also observe that at that moment side *a* is increasing at a rate of 2cm/s, side *b* is increasing at a rate of 1cm/s and side *c* is decreasing at a rate of 1cm/s. Find how fast θ is changing at that moment.

Hint: You may find it useful to recall the cosine rule $a^2 = b^2 + c^2 - 2bc\cos\theta$. Grading: 10 points

Solution:

From the cosine rule we find that

$$a(t)^{2} = b(t)^{2} + c(t)^{2} - 2b(t)c(t)\cos\theta(t),.$$
(*)

Substituting in the values $b(t_0) = 8$ cm, $c(t_0) = 5$ cm and $\theta(t_0) = \pi/3$ we find that

$$a(t_0) = 7cm$$

Taking derivatives of both sides of (*) with respect to t we find

$$2a(t_0)a'(t_0) = 2b(t_0)b'(t_0) + 2c(t_0)c'(t_0) - 2b'(t_0)c(t_0)\cos\theta(t_0) - b(t_0)c'(t_0)\cos\theta(t_0) + 2b(t_0)c(t_0)\sin\theta(t_0)\theta'(t_0).$$

Again putting in the given data $a(t_0) = 7$ cm, $b(t_0) = 8$ cm, $c(t_0) = 5$ cm, $\theta(t_0) = \pi/3$, $a'(t_0) = 2$ cm/s, $b'(t_0) = 1$ cm/s, $c'(t_0) = -1$ cm/s and recalling that $\cos \pi/3 = 1/2$ and $\sin \pi/3 = \sqrt{3}/2$, we find that

$$\theta'(t_0) = \frac{19\sqrt{3}}{120} cm/s$$

Hence θ is **increasing** at the rate of $\frac{19\sqrt{3}}{120}$ cm/s at that moment. (This is approximately 3mm/s.)