Bilkent University

Quiz \# 05
Math 101-Section 04 Calculus I
26 October 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $h(x)=7-\frac{20}{x^{2}+4}$ on the interval $[-4,4]$.
(a) Find the absolute minimum and the absolute maximum values of h on the given interval.
(b) Let f be a function such that $f^{\prime}(x)=h(x)$ on the given interval. Show that

$$
16 \leq f(4)-f(-4) \leq 48
$$

Grading: $5+5=10$ points

Solution:

(a) $h^{\prime}(x)=\frac{40 x}{\left(x^{2}+4\right)^{2}}=0$ gives $x=0$ as the only critical point.

We evaluate h at the critical and end points.

$$
h(-4)=6, \quad h(0)=2, \quad h(4)=6 .
$$

Hence the absolute minimum value of h is 2 at $x=0$, and the absolute maximum value of h is 6 at $x= \pm 4$.
(b) Using the Mean Value Theorem for f on the interval $[-4,4]$ we get

$$
\frac{f(4)-f(-4)}{4-(-4)}=f^{\prime}(c), \quad \text { for some } c \in(-4,4) .
$$

But $f^{\prime}(c)=h(c)$ and $2 \leq h(c) \leq 6$. Thus we get

$$
2 \leq \frac{f(4)-f(-4)}{4-(-4)} \leq 6
$$

which simplifies to

$$
16 \leq f(2)-f(-1) \leq 48
$$

as claimed.

