

Bilkent University

Quiz # 07 Math 101-Section 04 Calculus I 9 November 2023 Thursday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Let $f(x) = x^5$ on the interval [0,1]. Subdivide this interval into n equal subintervals as $0 = x_0 < x_1 < \cdots < x_n = 1$. For this function and for this partition we define $L_n = \sum_{i=0}^{n-1} \frac{1}{n} f(x_i)$, $U_n = \sum_{i=1}^n \frac{1}{n} f(x_i), R_n = \sum_{i=1}^n \frac{1}{n} f(x_i^*)$, where each $x_i^* \in [x_{i-1}, x_i]$ is an arbitrarily chosen points. (a) Calculate $\lim_{n \to \infty} L_n$. (b) Calculate $\lim_{n \to \infty} U_n$. (c) Calculate $\lim_{n \to \infty} R_n$. Hint: $1^5 + \cdots + n^5 = \frac{1}{12} [2n^6 + 6n^5 + 5n^4 - n^2]$

Solution: (Grader: rbulakguler71@gmal.com)

(a) Note that $x_i = i/n$. Then we have

$$L_n = \sum_{i=0}^{n-1} \frac{1}{n} \frac{i^5}{n^5} = \frac{1}{n^6} \sum_{i=0}^{n-1} i^5 = \frac{1}{n^6} \left[\frac{1}{12} \left[2(n-1)^6 + 6(n-1)^5 + 5(n-1)^4 - (n-1)^2\right]\right]$$

Now we clearly have $\lim_{n \to \infty} L_n = \frac{1}{6}$.

(b) As above we have $x_i = i/n$ and we have

$$U_n = \sum_{i=1}^n \frac{1}{n} \frac{i^5}{n^5} = \frac{1}{n^6} \sum_{i=1}^n i^5 = \frac{1}{n^6} \left[\frac{1}{12} \left[2n^6 + 6n^5 + 5n^4 - n^2 \right] \right]$$

Now we have $\lim_{n \to \infty} U_n = \frac{1}{6}$.

(c) Since f is increasing we have $L_n < R_n < U_n$. Using the squeeze theorem we have $\lim_{n \to \infty} R_n = \frac{1}{6}$.