Quiz \# 07
Math 101-Section 04 Calculus I
9 November 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(x)=x^{5}$ on the interval $[0,1]$. Subdivide this interval into n equal subintervals as $0=x_{0}<x_{1}<\cdots<x_{n}=1$. For this function and for this partition we define $L_{n}=\sum_{i=0}^{n-1} \frac{1}{n} f\left(x_{i}\right)$, $U_{n}=\sum_{i=1}^{n} \frac{1}{n} f\left(x_{i}\right), R_{n}=\sum_{i=1}^{n} \frac{1}{n} f\left(x_{i}^{*}\right)$, where each $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ is an arbitrarily chosen points.
(a) Calculate $\lim _{n \rightarrow \infty} L_{n}$.
(b) Calculate $\lim _{n \rightarrow \infty} U_{n}$.
(c) Calculate $\lim _{n \rightarrow \infty} R_{n}$.
Hint: $1^{5}+\cdots+n^{5}=\frac{1}{12}\left[2 n^{6}+6 n^{5}+5 n^{4}-n^{2}\right]$

Solution: (Grader: rbulakguler71@gmal.com)
(a) Note that $x_{i}=i / n$. Then we have

$$
L_{n}=\sum_{i=0}^{n-1} \frac{1}{n} \frac{i^{5}}{n^{5}}=\frac{1}{n^{6}} \sum_{i=0}^{n-1} i^{5}=\frac{1}{n^{6}}\left[\frac{1}{12}\left[2(n-1)^{6}+6(n-1)^{5}+5(n-1)^{4}-(n-1)^{2}\right]\right]
$$

Now we clearly have $\lim _{n \rightarrow \infty} L_{n}=\frac{1}{6}$.
(b) As above we have $x_{i}=i / n$ and we have

$$
U_{n}=\sum_{i=1}^{n} \frac{1}{n} \frac{i^{5}}{n^{5}}=\frac{1}{n^{6}} \sum_{i=1}^{n} i^{5}=\frac{1}{n^{6}}\left[\frac{1}{12}\left[2 n^{6}+6 n^{5}+5 n^{4}-n^{2}\right]\right]
$$

Now we have $\lim _{n \rightarrow \infty} U_{n}=\frac{1}{6}$.
(c) Since f is increasing we have $L_{n}<R_{n}<U_{n}$.

Using the squeeze theorem we have $\lim _{n \rightarrow \infty} R_{n}=\frac{1}{6}$.

