Quiz \# 08
Math 101-Section 04 Calculus I
16 November 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find a function f and a number a such that

$$
2023+\int_{a}^{x} \frac{f(t)}{1+\sin ^{2} t^{4}} d t=7 \sqrt{x} \quad \text { for all } x>0
$$

Hint: Use the Fundamental Theorem of Calculus Part 1. (This question is inspired by exercise 81 on page 338 of your book.) Grading: 10 points
Solution: (Grader: taha.yigit@ug.bilkent.edu.tr)
Take the derivative of both sides with respect to x to obtain

$$
\frac{f(x)}{1+\sin ^{2} x^{4}}=\frac{7}{2 \sqrt{x}}
$$

which gives

$$
f(x)=\frac{7\left(1+\sin ^{2} x^{4}\right)}{2 \sqrt{x}}
$$

Next go to the given equation again and now put $x=a$ on both sides to obtain

$$
2023=7 \sqrt{a}
$$

which gives

$$
a=289^{2}=83521 .
$$

