Quiz \# 10
Math 101-Section 05 Calculus I
30 November 2023 Thursday
Instructor: Ali Sinan Sertöz

## Solution Key

## Q-1)

(a) Calculate $\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}$ without using L'Hospital's rule.
(b) Evaluate $\int_{0}^{\pi / 2} e^{\sin x} \sin 2 x d x$.

Hint: What is $\frac{d}{d t}\left[e^{t}(t-1)\right]=$ ?
(c) Show that the tangent line to the curve $y=e^{x}$ at $x=2024$ intersects $x$-axis at $x=2023$.

Grading: $3+4+3=10$ points
Solution: (Grader: rburakguler71@gmail.com)
(a)

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=\lim _{x \rightarrow 0} \frac{\ln (x+1)-\ln 1}{x}=\left.\frac{d}{d t}\right|_{t=1} \ln t=\left.\frac{1}{t}\right|_{t=1}=1
$$

(b) Using the hint we know that

$$
\frac{d}{d t}\left[e^{t}(t-1)\right]=e^{t}, \quad \text { i.e. in particular } \int e^{x} x d x=x e^{x}-e^{x}+C
$$

Now we can evaluate the given integral.

$$
\begin{aligned}
\int_{0}^{\pi / 2} e^{\sin x} \sin 2 x d x & =2 \int_{0}^{\pi / 2} e^{\sin x} \sin x \cos x d x \\
& =2 \int_{0}^{1} e^{u} u d u, \text { where we put } u=\sin x \\
& =2\left(u e^{u}-\left.e^{u}\right|_{u=0} ^{u=1}\right) \\
& =2
\end{aligned}
$$

(c) Since $\left(e^{x}\right)^{\prime}=e^{x}$, an equation for the tangent line to $y=e^{x}$ at $x=2024$ is of the form

$$
L(x)=e^{2024}(x-2024)+e^{2024}=e^{2024}(x-2023)
$$

and this line intersects the $x$-axis at $x=2023$.

