\qquad

Math 102 Calculus II - Final Exam Solution Manual

1) Calculate $\lim _{x \rightarrow 0} \frac{3 \tan x^{2}-3 x^{2}}{7 x^{6}+8 x^{7}}$.

Solution 1) First find the Taylor expansion of $\tan \theta$.
$f(\theta)=\tan \theta, f(0)=0$,
$f^{\prime}(\theta)=\sec ^{2} \theta, f^{\prime}(0)=1$,
$f^{\prime \prime}(\theta)=2 \sec ^{2} \theta \tan \theta, f^{\prime \prime}(0)=0$,
$f^{\prime \prime \prime}(\theta)=4 \sec ^{2} \theta \tan ^{2} \theta+2 \sec ^{4} \theta, f^{\prime \prime \prime}(0)=2$,
so $\tan \theta=\theta+\frac{\theta^{3}}{3}+$ higher terms, $3 \tan x^{2}=3 x^{2}+x^{6}+$ higher terms.
Hence $\frac{3 \tan x^{2}-3 x^{2}}{7 x^{6}+8 x^{7}}=\frac{x^{6}+\text { higher terms }}{7 x^{6}+\text { higher terms }} \rightarrow \frac{1}{7}$ as $x \rightarrow 0$.
2) Find the maximum value of the function $f(x, y)=5 x+2 y+x y-x^{2}-y^{2}$.

Solution 2)

$f_{x}=5+y-2 x=0, f_{y}=2+x-2 y=0$. The only solution is $(4,3)$.
$f_{x x}=-2, f_{x y}=1, f_{y y}=-2$.
$\Delta=f_{x x} f_{y y}-f_{x y}^{2}=3>0$.
Hence $(4,3)$ is a local maximum point, but since it is the only critical point it must be the global maximum point. Thus the maximum value of the function is $f(4,3)=13$.
3) Calculate $\lim _{R \rightarrow \infty} I_{R}$, where $I_{R}=\int_{0}^{R} \int_{y^{2}}^{R^{2}} y e^{-x^{2}} d x d y$.

Solution 3)

Changing the order of integration we get $I_{R}=\int_{0}^{R^{2}} \int_{0}^{\sqrt{x}} y e^{-x^{2}} d y d x=\int_{0}^{R^{2}} e^{-x^{2}}\left(\left.\frac{1}{2} y^{2}\right|_{0} ^{\sqrt{x}}\right) d x=$ $\frac{1}{2} \int_{0}^{R^{2}} x e^{-x^{2}} d x=\frac{1}{4}\left(-\left.e^{-x^{2}}\right|_{0} ^{R^{2}}\right)=\frac{1}{4}\left(1-e^{-R^{4}}\right)$.
So $\lim _{R \rightarrow \infty} I_{R}=\frac{1}{4}$.
4) Let S be the surface $z+x^{2}+y^{2}=1, z \geq 0$, and \vec{n} the unit normal vector of S pointing outwards. Consider the vector field $F=\left(-y+x z+z^{2}, x+y z^{2}+z^{3}, z^{7}-z\right)$. Calculate $\iint_{S} \operatorname{curl} F \cdot \vec{n} d \sigma$.
Solution 4) The boundary of S is the unit circle in the $x y$-plane parametrized as $\vec{r}(t)=$ $(\cos t, \sin t, 0), 0 \leq t \leq 2 \Pi$.
$\operatorname{curl} F=\nabla \times F$, and Stokes' theorem says $\iint_{S} \nabla \times F \cdot \vec{n} d \sigma=\oint_{C} F \cdot d \vec{r}$.
$F \mid C=(-\sin t, \cos t, 0)$.
$d \vec{r}(t)=(-\sin t, \cos t, 0) d t$
$F \cdot d \vec{r}=d t$.
So the required integral becomes $\oint_{C} F \cdot d \vec{r}=\int_{0}^{2 \pi} d t=2 \pi$.
It is also possible to calculate the integral $\iint_{S} \nabla \times F \cdot \vec{n} d \sigma$ directly. For this let $f=z+x^{2}+y^{2}-1$. $\nabla f=(2 x, 2 y, 1), R=\left\{(x, y, 0) \mid x^{2}+y^{2} \leq 1\right\}, \mathbf{p}=\mathbf{k}$
$\operatorname{curl} F=\left(-2 y z-3 z^{2}, x+2 z, 2\right)$
$\vec{n}=\frac{\nabla f}{|\nabla f|}, d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|}$.
Hence curl$F \cdot \vec{n} d \sigma=\mathbf{c u r l} F \cdot \nabla f d x d y$, and the required integral becomes $\iint_{R} \operatorname{curl} F \cdot \nabla f d x d y=\iint_{R}\left[4 y(1-x)\left(1-x^{2}-y^{2}\right)-6 x(1-\right.$ $\left.\left.x^{2}-y^{2}\right)^{2}+2 x y+2\right] d x d y=\int_{0}^{2 \pi} \int_{0}^{1}(2+2 \cos \theta \sin \theta) r d r d \theta=2 \pi$.
5) Let K be the regular octagon shown in the figure. Let $\vec{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$. Calculate the counterclockwise circulation, $\int_{K} \vec{F} \cdot \mathbf{T} d s$, of the vector field \vec{F} around K.
Solution 5) This is a version of Example 6 on page 1092 of the book.
Let C be a circle of radius ϵ centered at the origin, where $0<\epsilon<1 / 2$. Orient C counterclockwise. Let E be the region between K and C. By direct calculation we find $\operatorname{div} \vec{F}=0$. By Green's theorem we have
$\int_{K-C} \vec{F} \cdot \mathbf{T} d s=\iint_{E} \operatorname{div} \vec{F} d A=0$.
so $\int_{K} \vec{F} \cdot \mathbf{T} d s=\int_{C} \vec{F} \cdot \mathbf{T} d s$.
C is parametrized as $r(t)=(\epsilon \cos t, \epsilon \sin t), 0 \leq t \leq 2 \pi$.
$d r=(-\epsilon \sin t, \epsilon \cos t) d t, \vec{F} \left\lvert\, C=\left(-\frac{\sin t}{\epsilon}, \frac{\cos t}{\epsilon}\right)\right.$
$\vec{F} \mid C \cdot d r=d t$, so $\int_{C} \vec{F} \cdot \mathbf{T} d s=\int_{0}^{2 \pi} d t=2 \pi$.
Hence $\int_{K} \vec{F} \cdot \mathbf{T} d s=2 \pi$.

