Date: 14 July 2001, Saturday Instructor: Ali Sinan Sertöz Time: 10:00-12:00

Math 102 Calculus II – Midterm Exam II SOLUTIONS

1) Plot the graph of $r = 1 + 2\cos(\theta)$, for $0 \le \theta \le 2\pi$.

Solution-1) The graph is symmetric about *x*-axis.

When $0 \le \theta \le \pi/2$, $\cos \theta$ decreases from 1 to 0, so r decreases from 3 to 1. When $\pi/2 \le \theta \le 2\pi/3$, $\cos \theta$ decreases from 0 to -1/2, so r decreases from 1 to 0. When $2\pi/3 \le \theta \le \pi$, $\cos \theta$ decreases from -1/2 to -1, so r decreases from 0 to -1. Now flipping the resulting curve about x-axis gives the full graph.

2) Let ω be a differentiable function of x and y, and let x = f(t) and y = g(t), where f and g are differentiable functions of t. Using the table below, calculate $\frac{d^2\omega}{dt^2}(0)$.

$$\begin{aligned} f(0) &= 1 & f(1) = 0 & g(0) = 1 & g(1) = 0 \\ f'(0) &= 2 & f'(1) = 3 & g'(0) = 4 & g'(1) = 6 \\ f''(0) &= -3 & f''(1) = -2 & g''(0) = 10 & g''(1) = 11 \end{aligned}$$
$$\frac{\partial \omega}{\partial x}(0,0) &= 31 & \frac{\partial \omega}{\partial x}(1,1) = 13 & \frac{\partial \omega}{\partial y}(0,0) = 18 & \frac{\partial \omega}{\partial y}(1,1) = 8 & \frac{\partial^2 \omega}{\partial x \partial y}(0,0) = 3 \\ \frac{\partial^2 \omega}{\partial^2 x}(0,0) &= 6 & \frac{\partial^2 \omega}{\partial^2 x}(1,1) = 7 & \frac{\partial^2 \omega}{\partial^2 y}(0,0) = 8 & \frac{\partial^2 \omega}{\partial^2 y}(1,1) = -6 & \frac{\partial^2 \omega}{\partial x \partial y}(1,1) = 5 \end{aligned}$$
Solution-2)
$$\frac{d\omega}{dt}(0) = \frac{\partial \omega}{\partial x}(1,1) \cdot f'(0) + \frac{\partial \omega}{\partial y}(1,1) \cdot g'(0)$$

$$\frac{d^2\omega}{dt^2}(0) = \left(\frac{\partial^2\omega}{\partial x^2}(1,1) \cdot f'(0) + \frac{\partial^2\omega}{\partial y\partial x}(1,1) \cdot g'(0)\right) \cdot f'(0) + \frac{\partial\omega}{\partial x}(1,1) \cdot f''(0) \\
+ \left(\frac{\partial^2\omega}{\partial x\partial y}(1,1) \cdot f'(0) + \frac{\partial^2\omega}{\partial y^2}(1,1) \cdot g'(0)\right) \cdot g'(0) + \frac{\partial\omega}{\partial y}(1,1) \cdot g''(0) \\
= ((7)(2) + (5)(4))(2) + (13)(-3) \\
+ ((5)(2) + (-6)(4))(4) + (8)(10)$$

= 53.

3) Let *E* be the tangent plane to the surface $3x^2 + 4y^2 - 2z^2 = 1$ at the point (1, 2, 3). Let $\omega = x^2 + 8xy + 8y^3 + z^5$, subject to the condition that $(x, y, z) \in E$.

Calculate
$$\left(\frac{\partial \omega}{\partial x}\right)_z$$
 at the point $(x, z) = (1, -1)$.

Solution-3) The surface is given by $f(x, y, z) = 3x^2 + 4y^2 - 2z^2 - 1 = 0$. The gradient of f is $\nabla f = (6x, 8y, -4z)$. Evaluating at the point (1, 2, 3) gives $\nabla f(1, 2, 3) = (6, 16, -12)$ which is the normal vector of the plane E. Thus the equation of E is $g(x, y, z) = 6 \cdot (x - 1) + 16 \cdot (y - 2) - 12 \cdot (z - 3) = 0$, or g(x, y, z) = 3x + 8y - 6z - 1 = 0.

Now differentiate ω with respect to x keeping in mind that z is free but y is dependent:

$$\left(\frac{\partial \omega}{\partial x}\right)_z (x, y, z) = 2x + 8y + 8x \frac{\partial y}{\partial x} + 24y^2 \frac{\partial y}{\partial x}.$$

From the restraint g = 0 we get by differentiating both sides with respect to x, $3 + 8\frac{\partial y}{\partial x} = 0$, or $\frac{\partial y}{\partial x} = -\frac{3}{2}$

or
$$\frac{\partial g}{\partial x} = -\frac{3}{8}$$
.

From g(1, y, -1) = 0, we find y = -1. Finally substituting in these values we get

$$\left(\frac{\partial\omega}{\partial x}\right)_z (1, -1, -1) = 2 - 8 + 8(-3/8) + 24(-3/8) = -18.$$

4) What is the largest value that the function $f(x,y) = 6xy - 4x^3 - 3y^2$ can take?

Solution-4) $f_x = 6y - 12x^2$, $f_y = 6x - 6y$. From $f_x = f_y = 0$ we find that the critical points are (0,0) and (1/2, 1/2). $f_{xx} = -24x$, $f_{xy} = 6$, $f_{yy} = -6$. $\Delta = f_{xx}f_{yy} - (f_{xy})^2$. At (0,0), $\Delta(0,0) = -36 < 0$, so (0,0) is a saddle point. At (1/2, 1/2), $\Delta(1/2, 1/2) = 36 > 0$ and $f_{xx}(1/2, 1/2) = -12 < 0$, so (1/2, 1/2) is a local maximum point. The value of f at this local maximum point is f(1/2, 1/2) = 1/4. However, the function has neither global maximum nor global minimum values as can be seen by checking the limits $\lim_{x\to\infty} f(x,0) = -\infty$ and $\lim_{x\to-\infty} f(x,0) = \infty$.

5) Find the minimum and maximum values of f(x, y) = x + 2y + 3 subject to the condition that $4x^2 + 5y^2 = 84/5$.

Solution-5) Let $g(x,y) = 4x^2 + 5y^2 - 84/5$. $\nabla f = \lambda \nabla g$ gives $(1,2) = \lambda(8x,10y)$, or $x = 1/(8\lambda)$, $y = 1/(5\lambda)$. Using the constraint $g(1/(8\lambda), 1/(5\lambda)) = 0$, we find that $x = \pm 1$ and $y = \pm 8/5$.

Then the maximum value of f is f(1, 8/5) = 36/5, and the minimum value is f(-1, -8/5) = -6/5.