Math 102 Calculus II - Midterm Exam II SOLUTIONS

1) Plot the graph of $r=1+2 \cos (\theta)$, for $0 \leq \theta \leq 2 \pi$.

Solution-1) The graph is symmetric about x-axis.
When $0 \leq \theta \leq \pi / 2, \cos \theta$ decreases from 1 to 0 , so r decreases from 3 to 1 .
When $\pi / 2 \leq \theta \leq 2 \pi / 3, \cos \theta$ decreases from 0 to $-1 / 2$, so r decreases from 1 to 0 .
When $2 \pi / 3 \leq \theta \leq \pi, \cos \theta$ decreases from $-1 / 2$ to -1 , so r decreases from 0 to -1 .
Now flipping the resulting curve about x-axis gives the full graph.

2) Let ω be a differentiable function of x and y, and let $x=f(t)$ and $y=g(t)$, where f and g are differentiable functions of t. Using the table below, calculate $\frac{d^{2} \omega}{d t^{2}}(0)$.

$$
\begin{array}{llll}
f(0)=1 & f(1)=0 & g(0)=1 & g(1)=0 \\
f^{\prime}(0)=2 & f^{\prime}(1)=3 & g^{\prime}(0)=4 & g^{\prime}(1)=6 \\
f^{\prime \prime}(0)=-3 & f^{\prime \prime}(1)=-2 & g^{\prime \prime}(0)=10 & g^{\prime \prime}(1)=11 \\
\frac{\partial \omega}{\partial x}(0,0)=31 & \frac{\partial \omega}{\partial x}(1,1)=13 & \frac{\partial \omega}{\partial y}(0,0)=18 & \frac{\partial \omega}{\partial y}(1,1)=8
\end{array} \frac{\frac{\partial^{2} \omega}{\partial x \partial y}(0,0)=3}{} \begin{array}{llll}
\frac{\partial^{2} \omega}{\partial^{2} x}(0,0)=6 & \frac{\partial^{2} \omega}{\partial^{2} x}(1,1)=7 & \frac{\partial^{2} \omega}{\partial^{2} y}(0,0)=8 & \frac{\partial^{2} \omega}{\partial^{2} y}(1,1)=-6
\end{array} \frac{\frac{\partial^{2} \omega}{\partial x \partial y}(1,1)=5}{l}
$$

Solution-2)

$$
\frac{d \omega}{d t}(0)=\frac{\partial \omega}{\partial x}(1,1) \cdot f^{\prime}(0)+\frac{\partial \omega}{\partial y}(1,1) \cdot g^{\prime}(0)
$$

$$
\begin{aligned}
\frac{d^{2} \omega}{d t^{2}}(0)= & \left(\frac{\partial^{2} \omega}{\partial x^{2}}(1,1) \cdot f^{\prime}(0)+\frac{\partial^{2} \omega}{\partial y \partial x}(1,1) \cdot g^{\prime}(0)\right) \cdot f^{\prime}(0)+\frac{\partial \omega}{\partial x}(1,1) \cdot f^{\prime \prime}(0) \\
& +\left(\frac{\partial^{2} \omega}{\partial x \partial y}(1,1) \cdot f^{\prime}(0)+\frac{\partial^{2} \omega}{\partial y^{2}}(1,1) \cdot g^{\prime}(0)\right) \cdot g^{\prime}(0)+\frac{\partial \omega}{\partial y}(1,1) \cdot g^{\prime \prime}(0) \\
= & ((7)(2)+(5)(4))(2)+(13)(-3) \\
& +((5)(2)+(-6)(4))(4)+(8)(10) \\
= & 53 .
\end{aligned}
$$

3) Let E be the tangent plane to the surface $3 x^{2}+4 y^{2}-2 z^{2}=1$ at the point $(1,2,3)$. Let $\omega=x^{2}+8 x y+8 y^{3}+z^{5}$, subject to the condition that $(x, y, z) \in E$.

Calculate $\left(\frac{\partial \omega}{\partial x}\right)_{z}$ at the point $(x, z)=(1,-1)$.
Solution-3) The surface is given by $f(x, y, z)=3 x^{2}+4 y^{2}-2 z^{2}-1=0$. The gradient of f is $\nabla f=(6 x, 8 y,-4 z)$. Evaluating at the point $(1,2,3)$ gives $\nabla f(1,2,3)=(6,16,-12)$ which is the normal vector of the plane E. Thus the equation of E is $g(x, y, z)=6 \cdot(x-1)+16 \cdot(y-$ $2)-12 \cdot(z-3)=0$, or $g(x, y, z)=3 x+8 y-6 z-1=0$.
Now differentiate ω with respect to x keeping in mind that z is free but y is dependent:
$\left(\frac{\partial \omega}{\partial x}\right)_{z}(x, y, z)=2 x+8 y+8 x \frac{\partial y}{\partial x}+24 y^{2} \frac{\partial y}{\partial x}$.
From the restraint $g=0$ we get by differentiating both sides with respect to $x, 3+8 \frac{\partial y}{\partial x}=0$, or $\frac{\partial y}{\partial x}=-\frac{3}{8}$.

From $g(1, y,-1)=0$, we find $y=-1$. Finally substituting in these values we get

$$
\left(\frac{\partial \omega}{\partial x}\right)_{z}(1,-1,-1)=2-8+8(-3 / 8)+24(-3 / 8)=-18
$$

4) What is the largest value that the function $f(x, y)=6 x y-4 x^{3}-3 y^{2}$ can take?

Solution-4) $f_{x}=6 y-12 x^{2}, f_{y}=6 x-6 y$. From $f_{x}=f_{y}=0$ we find that the critical points are $(0,0)$ and $(1 / 2,1 / 2)$.
$f_{x x}=-24 x, \quad f_{x y}=6, \quad f_{y y}=-6$.
$\Delta=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$.
At $(0,0), \Delta(0,0)=-36<0$, so $(0,0)$ is a saddle point.
At $(1 / 2,1 / 2), \Delta(1 / 2,1 / 2)=36>0$ and $f_{x x}(1 / 2,1 / 2)=-12<0$, so $(1 / 2,1 / 2)$ is a local maximum point. The value of f at this local maximum point is $f(1 / 2,1 / 2)=1 / 4$.
However, the function has neither global maximum nor global minimum values as can be seen by checking the limits
$\lim _{x \rightarrow \infty} f(x, 0)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x, 0)=\infty$.
5) Find the minimum and maximum values of $f(x, y)=x+2 y+3$ subject to the condition that $4 x^{2}+5 y^{2}=84 / 5$.

Solution-5) Let $g(x, y)=4 x^{2}+5 y^{2}-84 / 5 . \quad \nabla f=\lambda \nabla g$ gives $(1,2)=\lambda(8 x, 10 y)$, or $x=1 /(8 \lambda), \quad y=1 /(5 \lambda)$. Using the constraint $g(1 /(8 \lambda), 1 /(5 \lambda))=0$, we find that $x= \pm 1$ and $y= \pm 8 / 5$.
Then the maximum value of f is $f(1,8 / 5)=36 / 5$, and the minimum value is $f(-1,-8 / 5)=$ $-6 / 5$.

