Math 102 Calculus - Midterm Exam I Solutions

Q-1) Evaluate the integral $\int \frac{x^{2}+5}{(x-1)^{2}\left(x^{2}+1\right)} d x$
Solution: Here you need to simplify the integrand using the technique of partial fractions:

$$
\frac{x^{2}+5}{(x-1)^{2}\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{\left.x^{2}+1\right)} .
$$

Bringing the RHS to common denominator and equating the numerators of LHS with that of the RHS gives

$$
x^{2}+5=(A+C) x^{3}+(-A+B-2 C+D) x^{2}+(A+C-2 D) x+(-A+B+D) .
$$

From here it follows that $A=-2, B=3, C=2$ and $D=0$, so

$$
\frac{x^{2}+5}{(x-1)^{2}\left(x^{2}+1\right)}=-2 \frac{1}{x-1}+3 \frac{1}{(x-1)^{2}}+\frac{2 x}{x^{2}+1}
$$

which can now be integrated easily to give

$$
\int \frac{x^{2}+5}{(x-1)^{2}\left(x^{2}+1\right)} d x=-2 \ln |x-1|-\frac{3}{x-1}+\ln \left(x^{2}+1\right)+C .
$$

Q-2-A) Evaluate the integral $\int x(\ln x)^{2} d x$
Solution: Let $u=(\ln x)^{2}$ and $d v=x d x$. Then $d u=(2 / x) \ln x d x, v=(1 / 2) x^{2}$. This gives

$$
\int x(\ln x)^{2} d x=\frac{1}{2} x^{2}(\ln x)^{2}-\int x \ln x d x
$$

For the second integral let $u=\ln x, d v=x d x$. Then $d u=(1 / x) d x, v=(1 / 2) x^{2}$ and

$$
\begin{aligned}
\int x \ln x d x & =\frac{1}{2} x^{2} \ln x-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C
\end{aligned}
$$

Combining these we get

$$
\int x(\ln x)^{2}=\frac{1}{2} x^{2}(\ln x)^{2}-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2}+C
$$

Q-2-B) Evaluate the integral $\int \frac{\sqrt{x^{2}-1}}{x^{2}} d x$.
Solution: Put $x=\sec \theta, d x=\sec \theta \tan \theta d \theta$. Then $\sqrt{x^{2}-1}=\tan \theta$ and

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-1}}{x^{2}} d x & =\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta \\
& =\int \frac{\sec ^{2} \theta-1}{\sec \theta} d \theta \\
& =\int \sec \theta d \theta-\int \cos \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|-\sin \theta+C \\
& =\ln \left|x+\sqrt{x^{2}-1}\right|-\frac{\sqrt{x^{2}-1}}{x}+C .
\end{aligned}
$$

Q-3-A) Does the improper integral $\int_{0}^{\infty} \frac{d x}{\sqrt{64 x^{7}+2003}}$ exist? Show your reasoning in detail.
Solution: First observe that

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{64 x^{7}+2003}}=\int_{0}^{1} \frac{d x}{\sqrt{64 x^{7}+2003}}+\int_{1}^{\infty} \frac{d x}{\sqrt{64 x^{7}+2003}}
$$

and the integral from 0 to 1 is finite. So we have to examine only the integral from 1 to ∞. For this we recall that $\int_{1}^{\infty} \frac{d x}{x^{7 / 2}}$ converges since $7 / 2>1$. On the other hand

$$
\lim _{x \rightarrow \infty} \frac{\left(1 / x^{(7 / 2)}\right)}{\left(1 / \sqrt{64 x^{7}+2003}\right)}=8
$$

and by the Limit Comparison Test the original integral converges.

Q-3-B) Does the improper integral $\int_{0}^{1} \frac{x}{\sin ^{3} x} d x$ exist? Show your reasoning in detail.
Solution: First recall that $\int_{0}^{1} \frac{d x}{x^{2}}$ diverges. Then observe that

$$
\lim _{x \rightarrow 0^{+}} \frac{\left(1 / x^{2}\right)}{\left(x / \sin ^{3} x\right)}=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x}\right)^{3}=1
$$

and by the Limit Comparison test the original integral diverges.

Q-4-A) Write the equation of the plane passing through the points

$$
P=(1,2,3), Q=(2,3,2) \text { and } R=(3,5,4)
$$

Solution: First find two vectors parallel to the plane:
$\overrightarrow{P Q}=Q-P=(1,1,-1), \overrightarrow{P R}=R-P=(2,3,1)$.
Then find a direction \vec{n} orthogonal to both of these vectors: $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=(4,-3,1)$.
Now observe that $\vec{n} \cdot P=\vec{n} \cdot Q=\vec{n} \cdot R=1$. So the equation of this plane is

$$
4 x-3 y+z=1
$$

Q-4-B) Find the point of intersection of the line
$x=1+2 t, y=3+4 t, z=5+6 t, t \in \mathbb{R}$, with the plane $7 x+8 y+9 z=10$.
Solution: Substitute the parametric equations of the line into the equation of the plane to obtain

$$
7(1+2 t)+8(3+4 t)+9(5+6 t)=10
$$

which gives $t=-\frac{33}{50}$. Putting this value of t into the parametric equation of the line gives the point of intersection as

$$
x=-\frac{8}{25}, \quad y=\frac{9}{25}, \quad z=\frac{26}{25} .
$$

I hope you had all the answers right.
If you have any comments or questions please write to me at : sertoz@fen.bilkent.edu.tr

