Math 102 Calculus II
 Quiz-3
 Solutions

Ali Sinan Sertöz

Sec01) Find the equation of the tangent plane and the normal line at the point $P_{0}=(1,2,3)$ of the level surface $f(x, y, z)=f(1,2,3)$ where $f(x, y, z)=x^{2}+7 x y^{3}+z^{3}+\arcsin (x / y)+y z+1778$.

Solution:

$$
\begin{gathered}
\nabla f=\left(2 x+7 y^{3}+\frac{1}{\sqrt{1-(x / y)^{2}}}(1 / z), 21 x y^{2}+z, \frac{1}{\sqrt{1-(x / y)^{2}}}\left(-x / y^{2}\right)+y\right) \\
\nabla f\left(P_{0}\right)=\left(58+\frac{1}{2 \sqrt{2}}, 87, \frac{-1}{6 \sqrt{2}}+2\right)
\end{gathered}
$$

The tangent plane is given by the equation:

$$
\left(58+\frac{1}{2 \sqrt{2}}\right)(x-1)+87(y-2)+\left(\frac{-1}{6 \sqrt{2}}+2\right)(z-3)=0 .
$$

The normal line is given by the parametric equations, for $t \in \mathbb{R}$:

$$
\begin{aligned}
& x=1+\left(58+\frac{1}{2 \sqrt{2}}\right) t, \\
& y=2+87 t, \\
& z=3+\left(\frac{-1}{6 \sqrt{2}}+2\right) t
\end{aligned}
$$

Sec02) Find the equation of the tangent plane and the normal line at the point $P_{0}=(1 / 2,2,3)$ of the level surface $f(x, y, z)=f(1 / 2,2,3)$ where $f(x, y, z)=x^{2}+x y^{3}+z^{3}+\arccos x^{2}+778$.

Solution:

$$
\begin{gathered}
\nabla f=\left(2 x+y^{3}-\frac{1}{\sqrt{1-x^{2}}}, 3 y^{2} x, 3 z^{2}\right) \\
\nabla f\left(P_{0}\right)=\left(9-\frac{4}{\sqrt{15}}, 6,27\right)
\end{gathered}
$$

The tangent plane is given by the equation:

$$
\left(9-\frac{4}{\sqrt{15}}\right)(x-1 / 2)+6(y-2)+27(z-3)
$$

The normal line is given by the parametric equations, for $t \in \mathbb{R}$:
$x=1 / 2+\left(9-\frac{4}{\sqrt{15}}\right) t$,
$y=2+6 t$,
$z=3+27 t$.

