Math 102 Calculus II - Quiz-4
 Solutions

11 July, 2003
Ali Sinan Sertöz
Sec01) Let R be the region that lies inside the circle $x^{2}+y^{2}=25$ and above the line $y=x-1$. Write $\iint_{R} d A$ as an iterated integral in two different ways.
Solution: The line and the circle intersect at the points $(-3,-4)$ and $(4,3)$. Using this we have

$$
\iint_{R} d x d y=\int_{-4}^{3} \int_{-\sqrt{25-y^{2}}}^{y+1} d x d y+\int_{3}^{5} \int_{-\sqrt{25-y^{2}}}^{\sqrt{25-y^{2}}} d x d y
$$

and

$$
\iint_{R} d y d x=\int_{-5}^{-3} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} d y d x+\int_{-3}^{4} \int_{x-1}^{\sqrt{25-x^{2}}} d y d x
$$

Each of these integrals is equal to

$$
\frac{25}{2} \pi+7 / 2-\frac{25}{2} \arcsin (3 / 5)+\frac{25}{2} \arcsin (4 / 5)=46.31733454
$$

Sec02) Let R be the region inside the parabola $y^{2}=25-x$, bounded by the line $y=x+17$ and the line $x=9$. Write $\iint_{R} d A$ as an iterated integral in two different ways.
Solution: The line $y=x+17$ intersects the parabola at the points $(-24,-7)$ and $(-11,6)$. The line $x=9$ intersects the parabola at the points $(9,-4)$ and $(9,4)$. Using this we have

$$
\iint_{R} d x d y=\int_{-7}^{-4} \int_{y-17}^{25-y^{2}} d x d y+\int_{-4}^{4} \int_{y-17}^{9} d x d y+\int_{4}^{6} \int_{y-17}^{25-y^{2}} d x d y
$$

and

$$
\iint_{R} d y d x=\int_{-24}^{-11} \int_{-\sqrt{25-x}}^{x+17} d y d x+\int_{-11}^{9} \int_{-\sqrt{25-x}}^{\sqrt{25-x}} d y d x
$$

Each of these integrals is equal to $\frac{1685}{6}=280.8333333$.

