Math 102 Calculus II - Quiz-5
 Solutions

18 July, 2003
Ali Sinan Sertöz
1-a) Find the sum of the series $\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}$.
Solution: Letting

$$
a_{n}=\frac{1}{(n-1)(n+1)}
$$

and using partial fractions technique we get

$$
2 a_{n}=\frac{2}{(n-1)(n+1)}=\frac{1}{n-1}-\frac{1}{n+1} .
$$

Adding the terms of the series we find

$$
\begin{aligned}
2 a_{2} & =1-\frac{1}{3} \\
2 a_{3} & =\frac{1}{2}-\frac{1}{4} \\
2 a_{4} & =\frac{1}{3}-\frac{1}{5} \\
& \vdots \\
2 a_{n-2} & =\frac{1}{n-3}-\frac{1}{n-1} \\
2 a_{n-1} & =\frac{1}{n-2}-\frac{1}{n} \\
2 a_{n} & =\frac{1}{n-1}-\frac{1}{n+1}
\end{aligned}
$$

from which it follows that the partial sum

$$
S_{n}=a_{1}+\cdots a_{n}=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)
$$

and after taking the limit as $n \rightarrow \infty$ we find that the sum is

$$
\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}=\frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{3}{4} .
$$

1-b) Test for convergence $\sum_{n=1}^{\infty} \frac{2^{n} \ln n}{n!}$.
Solution: Let $a_{n}=\frac{2^{n} \ln n}{n!}$. Using the ratio test we find that

$$
\frac{a_{n+1}}{a_{n}}=\frac{2 \ln (n+1)}{(n+1) \ln n}
$$

which converges to zero as $n \rightarrow \infty$. Hence the series converges by the Ratio Test.

2-a) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$.
Solution: Letting

$$
a_{n}=\frac{1}{n(n+3)}
$$

and using partial fractions technique we get

$$
3 a_{n}=\frac{3}{n(n+3)}=\frac{1}{n}-\frac{1}{n+3} .
$$

Adding the terms of the series we find

$$
\begin{aligned}
3 a_{1} & =1-\frac{1}{4} \\
3 a_{2} & =\frac{1}{2}-\frac{1}{5} \\
3 a_{3} & =\frac{1}{3}-\frac{1}{6} \\
3 a_{4} & =\frac{1}{4}-\frac{1}{7} \\
& \vdots \\
3 a_{n-3} & =\frac{1}{n-3}-\frac{1}{n} \\
3 a_{n-2} & =\frac{1}{n-2}-\frac{1}{n+1} \\
3 a_{n-1} & =\frac{1}{n-1}-\frac{1}{n+2} \\
3 a_{n} & =\frac{1}{n}-\frac{1}{n+3}
\end{aligned}
$$

from which it follows that the partial sum

$$
S_{n}=a_{1}+\cdots a_{n}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}-\frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3}\right)
$$

and after taking the limit as $n \rightarrow \infty$ we find that the sum is

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+3)}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}\right)=\frac{11}{18} .
$$

2-b) Test for convergence $\sum_{n=0}^{\infty} \frac{n!}{2^{n^{2}}}$.
Solution: Let $a_{n}=n!/ 2^{n^{2}}$. Using the ratio test we find that

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{2^{n^{2}+n+1}}
$$

which converges to zero as $n \rightarrow \infty$. Hence the series converges by the Ratio Test.

