MATH 102 MIDTERM II Solutions

1) Find the limit if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$

Solution-a: $\quad x^{2} y^{2} \leq 2 x^{2} y^{2}+x^{4}+y^{4} \leq\left(x^{2}+y^{2}\right)^{2}$, so $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}} \leq \lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)^{2}}{x^{2}+y^{2}}=$ $\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}=0$. Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}=0$ by the sandwich theorem.
Solution-b: Let $y=\lambda x^{2}$, then $\frac{x^{2} y}{x^{4}+y^{2}}=\frac{\lambda x^{4}}{x^{4}+\lambda^{2} x^{4}}=\frac{\lambda}{1+\lambda^{2}}$ when $x \neq 0$. Hence the limit depends on how (x, y) approaches the origin, and we say that the limit does not exist.
2. Let $f(x, y)=\tan \left(\pi \sin \left(\frac{\pi}{4 \sqrt{3}} y\right)-\frac{\pi}{3} x^{12}\right)$ and $x(t)=\tan t, y(t)=\sec \frac{2 t}{3}$.

If we set $g(t)=f(x(t), y(t))$, find $g^{\prime}\left(\frac{\pi}{4}\right)$.
Solution: Let $h(x, y)=\pi \sin \left(\frac{\pi}{4 \sqrt{3}} y\right)-\frac{\pi}{3} x^{12}$.
Then $f(x, y)=\tan (h(x, y)$, and $g(t)=\tan (h(x(t), y(t)))$.
By the chain rule $g^{\prime}(t)=\sec ^{2}(h(x(t), y(t)))\left[h_{x}(x(t), y(t)) x^{\prime}(t)+h_{y}(x(t), y(t)) y^{\prime}(t)\right]$.
Finally $g^{\prime}\left(\frac{\pi}{4}\right)=\sec ^{2}\left(h\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right)\right) \quad\left[h_{x}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) x^{\prime}\left(\frac{\pi}{4}\right)+h_{y}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) y^{\prime}\left(\frac{\pi}{4}\right)\right]$.
Note that: $x^{\prime}(t)=\sec ^{2} t, y^{\prime}(t)=\frac{2}{3} \sec \frac{2 t}{3} \tan \frac{2 t}{3}$,
$h_{x}(x, y)=-4 \pi x^{11}, h_{y}=\frac{\pi^{2}}{4 \sqrt{3}} \cos \left(\frac{\pi}{4 \sqrt{3}} y\right)$.
$x\left(\frac{\pi}{4}\right)=1, y\left(\frac{\pi}{4}\right)=\frac{2}{\sqrt{3}}$,
$x^{\prime}\left(\frac{\pi}{4}\right)=2, y^{\prime}\left(\frac{\pi}{4}\right)=\frac{4}{9}$
$h_{x}\left(1, \frac{2}{\sqrt{3}}\right)=-4 \pi, h_{y}\left(1, \frac{2}{\sqrt{3}}\right)=\frac{\pi^{2}}{8}$.
Putting these together we find, $g^{\prime}\left(\frac{\pi}{4}\right)=\frac{2 \pi(\pi-144)}{27}$
3. Let $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$.
(a) Find ∇f.
(b) Find the directional derivative of f at the point $(1,2)$ in the direction pointing from $(1,2)$ towards the point $(4,6)$.
(c) Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point $(3,2)$.
(d) Find the parametric equations of a normal line to the surface $z=f(x, y)$ at the point $(0,0)$.

Solution-a: $\quad \nabla f=\left(\frac{2 x}{1+x^{2}+y^{2}}, \frac{2 y}{1+x^{2}+y^{2}}\right)$.
Solution-b: $\quad v=(4,6)-(1,2)=(3,4), \vec{u}=(3 / 5,4 / 5)$, $\nabla f(1,2)=(1 / 3,2 / 3) . D_{\vec{u}} f(1,2)=\nabla f \cdot \vec{u}=11 / 5$.

Solution-c: $\quad \nabla f(3,2)=(3 / 7,2 / 7), f(3,2)=\ln 14$. Equation of the tangent plane at $(3,2)$ is $\nabla f(3,2) \cdot(x-3, y-2)-(z-\ln 14)=0$, or after simplifying $3 x+2 y-7 z=13-7 \ln 14$.

Solution-d: $\quad \nabla f(0,0)=(0,0)$ so an equation of a normal line will be $x=0, y=0, z=t$, where $t \in \mathbb{R}$.
4. Let $f(x, y)=y(1+x)+\ln \frac{1}{x^{2} y^{3}}$, where $x, y>0$.

Find the global minimum, maximum and saddle points of f, if they exist, in the given domain.

Solution:

$f(x, y)=y+x y-2 \ln x-3 \ln y, f_{x}=y-2 / x, f_{y}=1+x-3 / y$. The only critical point is $(2,1)$. $f_{x x}(2,1)>0$, and $f_{x x}(2,1) f_{y y}(2,1)-f_{x y}^{2}(2,1)>0$ so this critical point is a local minimum, but since it is the only critical point it must be the global minimum.
5. Find the extreme values of $f(x, y, z)=4 x^{2}+y^{2}+z^{2}$ subject to the condition $x^{4}-y^{2} z^{2}=\frac{9}{4}$. For each extreme value decide if it is a minimum or a maximum value.

Solution: $\quad \Delta f=(8 x, 2 y, 2 z), g(x, y, z)=x^{4}-y^{2} z^{2}-9 / 4, \Delta g=\left(4 x^{3},-2 y z^{2},-2 y^{2} z\right)$.
$\Delta f=\lambda \Delta g$ gives:
(1) $8 x=4 \lambda x^{3}$,
(2) $2 y=-2 \lambda y z^{2}$,
(3) $2 z=-2 \lambda y^{2} z$.

From (1) $2 x=\lambda x^{3}$.

Case-1: $\quad x=0$.
Then $g(0, y, z)<0$, contradiction.
Case-2: $\quad x \neq 0$.
Then $x^{2}=2 / \lambda$, so in particular $\lambda>0$.
Subcase 2.1: $y=0$.
Then from (3), $z=0 . g(x, 0,0)=0$ gives $x= \pm \sqrt{3 / 2}$, so $f(\pm \sqrt{3 / 2}, 0,0)=6$.
Subcase 2.2: $\quad y \neq 0$.
Then from (2) $z^{2}=-1 / \lambda$ which is a contradiction since $\lambda>0$ in case- 2 .
So the only critical value of f is 6 . Letting $y=z=t$ and solving x as $\pm\left(9 / 4+t^{4}\right)^{1 / 4}$ from $g=0$ we see that $f\left(\pm\left(9 / 4+t^{4}\right)^{1 / 4}, t, t\right)=4 \sqrt{9 / 4+t^{2}}+2 t^{2}$ and that this is unbounded as t becomes large. Hence 6 is the global minimum value of f.

