Date: July 5, 2004

MATH 102 MIDTERM II Solutions

1) Find the limit if it exists, or show that the limit does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$

Solution-a: $x^2y^2 \le 2x^2y^2 + x^4 + y^4 \le (x^2 + y^2)^2$, so $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2} \le \lim_{(x,y)\to(0,0)} \frac{(x^2 + y^2)^2}{x^2 + y^2} = 1$ $\lim_{(x,y)\to(0,0)} x^2 + y^2 = 0.$ Hence $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2} = 0$ by the sandwich theorem.

Solution-b: Let $y = \lambda x^2$, then $\frac{x^2 y}{x^4 + y^2} = \frac{\lambda x^4}{x^4 + \lambda^2 x^4} = \frac{\lambda}{1 + \lambda^2}$ when $x \neq 0$. Hence the limit depends on how (x, y) approaches the origin, and we say that the limit does not exist.

2. Let
$$f(x,y) = \tan\left(\pi \sin(\frac{\pi}{4\sqrt{3}}y) - \frac{\pi}{3}x^{12}\right)$$
 and $x(t) = \tan t, y(t) = \sec\frac{2t}{3}$

If we set g(t) = f(x(t), y(t)), find $g'\left(\frac{\pi}{4}\right)$.

Solution: Let $h(x, y) = \pi \sin(\frac{\pi}{4\sqrt{3}} y) - \frac{\pi}{3} x^{12}$. Then $f(x, y) = \tan(h(x, y))$, and $g(t) = \tan(h(x(t), y(t)))$. By the chain rule $g'(t) = \sec^2(h(x(t), y(t))) [h_x(x(t), y(t)) x'(t) + h_y(x(t), y(t)) y'(t)].$ Finally $g'(\frac{\pi}{4}) = \sec^2\left(h(x(\frac{\pi}{4}), y(\frac{\pi}{4}))\right) \left[h_x(x(\frac{\pi}{4}), y(\frac{\pi}{4})) x'(\frac{\pi}{4}) + h_y(x(\frac{\pi}{4}), y(\frac{\pi}{4})) y'(\frac{\pi}{4})\right].$ Note that: $x'(t) = \sec^2 t$, $y'(t) = \frac{2}{3} \sec \frac{2t}{3} \tan \frac{2t}{3}$, $h_x(x,y) = -4\pi x^{11}, \ h_y = \frac{\pi^2}{4\sqrt{3}}\cos(\frac{\pi}{4\sqrt{3}}y).$ $x(\frac{\pi}{4}) = 1, \ y(\frac{\pi}{4}) = \frac{2}{\sqrt{3}},$ $x'(\frac{\pi}{4}) = 2, y'(\frac{\pi}{4}) = \frac{4}{9}$ $h_x(1, \frac{2}{\sqrt{3}}) = -4\pi, \ h_y(1, \frac{2}{\sqrt{3}}) = \frac{\pi^2}{8}.$

Putting these together we find, $g'(\frac{\pi}{4}) = \frac{2\pi(\pi - 144)}{27}$

- **3.** Let $f(x, y) = \ln(1 + x^2 + y^2)$.
- (a) Find ∇f .
- (b) Find the directional derivative of f at the point (1, 2) in the direction pointing from (1, 2) towards the point (4, 6).
- (c) Find the equation of the tangent plane to the surface z = f(x, y) at the point (3, 2).
- (d) Find the parametric equations of a normal line to the surface z = f(x, y) at the point (0, 0).

Solution-a: $\nabla f = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}\right).$

Solution-b: $v = (4, 6) - (1, 2) = (3, 4), \ \vec{u} = (3/5, 4/5),$ $\nabla f(1, 2) = (1/3, 2/3). \ D_{\vec{u}}f(1, 2) = \nabla f \cdot \vec{u} = 11/5.$

Solution-c: $\nabla f(3,2) = (3/7,2/7), f(3,2) = \ln 14$. Equation of the tangent plane at (3,2) is $\nabla f(3,2) \cdot (x-3,y-2) - (z-\ln 14) = 0$, or after simplifying $3x + 2y - 7z = 13 - 7 \ln 14$.

Solution-d: $\nabla f(0,0) = (0,0)$ so an equation of a normal line will be x = 0, y = 0, z = t, where $t \in \mathbb{R}$.

4. Let $f(x, y) = y(1 + x) + \ln \frac{1}{x^2 y^3}$, where x, y > 0. Find the global minimum, maximum and saddle points of f, if they exist, in the given

Solution:

domain.

 $f(x,y) = y + xy - 2 \ln x - 3 \ln y$, $f_x = y - 2/x$, $f_y = 1 + x - 3/y$. The only critical point is (2, 1). $f_{xx}(2,1) > 0$, and $f_{xx}(2,1)f_{yy}(2,1) - f_{xy}^2(2,1) > 0$ so this critical point is a local minimum, but since it is the only critical point it must be the global minimum. 5. Find the extreme values of $f(x, y, z) = 4x^2 + y^2 + z^2$ subject to the condition $x^4 - y^2 z^2 = \frac{9}{4}$. For each extreme value decide if it is a minimum or a maximum value.

Solution: $\Delta f = (8x, 2y, 2z), \ g(x, y, z) = x^4 - y^2 z^2 - 9/4, \ \Delta g = (4x^3, -2yz^2, -2y^2z).$

 $\Delta f = \lambda \Delta g$ gives:

(1) $8x = 4\lambda x^3$, (2) $2y = -2\lambda y z^2$, (3) $2z = -2\lambda y^2 z$.

From (1) $2x = \lambda x^3$.

Case-1: x = 0. Then g(0, y, z) < 0, contradiction.

Case-2: $x \neq 0$. Then $x^2 = 2/\lambda$, so in particular $\lambda > 0$.

Subcase 2.1: y = 0. Then from (3), z = 0. g(x, 0, 0) = 0 gives $x = \pm \sqrt{3/2}$, so $f(\pm \sqrt{3/2}, 0, 0) = 6$.

Subcase 2.2: $y \neq 0$. Then from (2) $z^2 = -1/\lambda$ which is a contradiction since $\lambda > 0$ in case-2.

So the only critical value of f is 6. Letting y = z = t and solving x as $\pm (9/4 + t^4)^{1/4}$ from g = 0 we see that $f(\pm (9/4 + t^4)^{1/4}, t, t) = 4\sqrt{9/4 + t^2} + 2t^2$ and that this is unbounded as t becomes large. Hence 6 is the global minimum value of f.