Date: 24 July 2006, Monday Instructor: Ali Sinan Sertöz Time: 15:30-17:30

NAME: $\qquad$
STUDENT NO: $\qquad$

Math 102 Calculus - Final Exam - Solutions

| 1 | 2 | 3 | 4 | 5 | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 20 | 20 | 20 | 20 | 20 | 100 |

Please do not write anything inside the above boxes!

PLEASE READ: Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in detail.

Q-1) Find all values of $x$ for which the power series $\sum_{n=1}^{\infty} \frac{\ln n}{n 3^{n}} x^{n}$ converges.
Solution: Letting $a_{n}=\frac{\ln n}{n 3^{n}} x^{n}$, we use the ratio test:
$\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{n}{n+1} \frac{\ln (n+1)}{\ln n} \frac{|x|}{3} \rightarrow \frac{|x|}{3}$ as $n \rightarrow \infty$.
Therefore the series converges absolutely for all $|x|<3$.
We check the end points separately.
When $x=3$, the series becomes $\sum_{n=1}^{\infty} \frac{\ln n}{n}$, and diverges by direct comparison with the harmonic series, $0<\frac{1}{n}<\frac{\ln n}{n}$ for all $n \geq 3$.

When $x=-3$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$. Letting $f(x)=\ln (x) / x$, we find that $f^{\prime}(x)=(1-\ln x) / x^{2}$ which is negative for $x>e$. It now follows that the alternating series test applies to our series and it converges.

Hence the interval of convergence is $[-3,3)$.

Q-2) We have $w=w(x, y)$, i.e. $w$ is a function of $x$ and $y$. We also know that $x=x(r, s)$, $y=y(s, t), r=r(u), s=s(u, v), t=t(v)$.
The following equations are known to hold at $(u, v)=(0,1)$ :
$t=3, s=5, r=7, y=9, x=11$,
$t_{v}=2, s_{u}=4, s_{v}=6, r_{u}=8$,
$y_{s}=\pi, y_{t}=e, x_{r}=-1, x_{s}=-2$,
$w_{x}=10, w_{y}=-10$.
a: Write $w_{u}$ using chain rule.
b: Find $w_{u}$ at $(u, v)=(0,1)$.

## Solution:

$$
w_{u}=w_{x}\left(x_{r} r_{u}+x_{s} s_{u}\right)+w_{y} y_{s} s_{u} .
$$

Putting in the above values we find that $w_{u}=-160-40 \pi$ at $(u, v)=(0,1)$.
(G-3) Let $f(x, y)=\frac{1}{3} x^{3}-\frac{9}{2} x^{2}+7 x-x y+\frac{1}{2} y^{2}+9 y+1$.

Find all local min/max and saddle points of $f$. (15 points)
Does $f$ have global min/max points? ( 5 points)
Solution: $f_{x}=x^{2}-9 x+7-y=0$ and $f_{y}=-x+y+9=0$ gives $(8,-1)$ and $(2,-7)$ as the critical points.
$f_{x x}=2 x-9, f_{x y}=-1, f_{y y}=1$ and $\Delta=2 x-10$.
Using the second derivative test we find that $(8,-1)$ is a local min point and $(2,-7)$ is a saddle point.

Keeping $y=0$ and varying $x$ we see that $f$ goes both to $=\infty$ and $-\infty$, so the function has no global min or max.

Q-4) Evaluate the triple integral $\iiint_{R} f(x, y, z) d V$ where $f(x, y, z)=y$, and $R$ is the region in the first octant enclosed by the surfaces $z=2-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$, $x, y, z \geq 0$.

Solution: First we find that the projection of the curve of intersection of these surfaces is $x^{2}+y^{2}=1$. Then we start evaluating the integral.

$$
\begin{aligned}
\iiint_{R} f(x, y, z) d V & =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}} y d z d y d x \\
& =2 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left[\left(1-x^{2}\right) y-y^{3}\right] d y d x \\
& =\frac{1}{2} \int_{0}^{1}\left(1-x^{2}\right)^{2} d x \\
& =\frac{4}{15}
\end{aligned}
$$

Q-5) Find the flux of the vector field $\mathbf{F}=\left(\frac{x^{3}}{3}\right) \mathbf{i}+\left(\frac{x^{3}+3 x z+z^{3}}{z^{2}+2}\right) \mathbf{j}+\left(\frac{x^{2}+2 x y-y^{2}}{y^{4}+2}\right) \mathbf{k}$ across the sphere $S$ given by $x^{2}+y^{2}+z^{2}=4$ along the outward unit normal vector n. i.e. evaluate the integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

Solution: Trying to evaluate this integral directly is too tiring. We try the divergence theorem which says

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

where $D$ is the solid sphere which is inside of $S . \nabla \cdot \mathbf{F}=x^{2}$. Passing to spherical coordinates we find

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iiint_{D} \nabla \cdot \mathbf{F} d V \\
& =\iiint_{D} x^{2} d x d y d z \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2}(\rho \sin \phi \cos \theta)^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left(\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)\left(\int_{0}^{\pi} \sin ^{3} \phi d \phi\right)\left(\int_{0}^{2} \rho^{4} d \rho\right) \\
& =\left(\frac{4}{3}\right)(\pi)\left(\frac{32}{5}\right) \\
& =\frac{128 \pi}{15} .
\end{aligned}
$$

