NAME:	
STUDENT NO:	

Math 102 Calculus – Final Exam – Solutions

1	2	3	4	5	TOTAL
20	$2\overline{0}$	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ: Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in detail.

Q-1) Find all values of x for which the power series $\sum_{n=1}^{\infty} \frac{\ln n}{n 3^n} x^n$ converges.

Solution: Letting $a_n = \frac{\ln n}{n \, 3^n} x^n$, we use the ratio test:

 $\frac{|a_{n+1}|}{|a_n|} = \frac{n}{n+1} \frac{\ln(n+1)}{\ln n} \frac{|x|}{3} \to \frac{|x|}{3} \text{ as } n \to \infty.$

Therefore the series converges absolutely for all |x| < 3.

We check the end points separately.

When x = 3, the series becomes $\sum_{n=1}^{\infty} \frac{\ln n}{n}$, and diverges by direct comparison with the harmonic series, $0 < \frac{1}{n} < \frac{\ln n}{n}$ for all $n \ge 3$.

When x = -3, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$. Letting $f(x) = \ln(x)/x$, we find that $f'(x) = (1 - \ln x)/x^2$ which is negative for x > e. It now follows that the alternating series test applies to our series and it converges.

Hence the interval of convergence is [-3,3).

Q-2) We have w = w(x, y), i.e. w is a function of x and y. We also know that x = x(r, s), y = y(s, t), r = r(u), s = s(u, v), t = t(v). The following equations are known to hold at (u, v) = (0, 1): t = 3, s = 5, r = 7, y = 9, x = 11, $t_v = 2, s_u = 4, s_v = 6, r_u = 8,$ $y_s = \pi, y_t = e, x_r = -1, x_s = -2,$ $w_x = 10, w_y = -10.$ **a**: Write w_u using chain rule. **b**: Find w_u at (u, v) = (0, 1).

Solution:

$$w_u = w_x(x_r r_u + x_s s_u) + w_y y_s s_u.$$

Putting in the above values we find that $w_u = -160 - 40\pi$ at (u, v) = (0, 1).

STUDENT NO:

Q-3) Let $f(x,y) = \frac{1}{3}x^3 - \frac{9}{2}x^2 + 7x - xy + \frac{1}{2}y^2 + 9y + 1$.

Find all local min/max and saddle points of f. (15 points) Does f have global min/max points? (5 points)

Solution: $f_x = x^2 - 9x + 7 - y = 0$ and $f_y = -x + y + 9 = 0$ gives (8, -1) and (2, -7) as the critical points.

 $f_{xx} = 2x - 9$, $f_{xy} = -1$, $f_{yy} = 1$ and $\Delta = 2x - 10$.

Using the second derivative test we find that (8, -1) is a local min point and (2, -7) is a saddle point.

Keeping y = 0 and varying x we see that f goes both to $= \infty$ and $-\infty$, so the function has no global min or max.

STUDENT NO:

Q-4) Evaluate the triple integral $\int \int \int_R f(x, y, z) \, dV$ where f(x, y, z) = y, and R is the region in the first octant enclosed by the surfaces $z = 2 - x^2 - y^2$ and $z = x^2 + y^2$, $x, y, z \ge 0$.

Solution: First we find that the projection of the curve of intersection of these surfaces is $x^2 + y^2 = 1$. Then we start evaluating the integral.

$$\begin{split} \int \int \int_R f(x,y,z) \, dV &= \int_0^1 \int_0^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} y \, dz dy dx \\ &= 2 \int_0^1 \int_0^{\sqrt{1-x^2}} [(1-x^2)y - y^3] \, dy dx \\ &= \frac{1}{2} \int_0^1 (1-x^2)^2 \, dx \\ &= \frac{4}{15}. \end{split}$$

NAME:

STUDENT NO:

Q-5) Find the flux of the vector field $\mathbf{F} = \left(\frac{x^3}{3}\right) \mathbf{i} + \left(\frac{x^3 + 3xz + z^3}{z^2 + 2}\right) \mathbf{j} + \left(\frac{x^2 + 2xy - y^2}{y^4 + 2}\right) \mathbf{k}$ across the sphere *S* given by $x^2 + y^2 + z^2 = 4$ along the outward unit normal vector **n**. i.e. evaluate the integral

$$\int \int_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

Solution: Trying to evaluate this integral directly is too tiring. We try the divergence theorem which says

$$\int \int_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int \int \int_{D} \nabla \cdot \mathbf{F} \, dV$$

where *D* is the solid sphere which is inside of *S*. $\nabla \cdot \mathbf{F} = x^2$. Passing to spherical coordinates we find

$$\begin{split} \int \int_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma &= \int \int \int_{D} \nabla \cdot \mathbf{F} \, dV \\ &= \int \int \int_{D} \int_{D} x^{2} \, dx \, dy \, dz \\ &= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} (\rho \sin \phi \cos \theta)^{2} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta \\ &= \left(\int_{0}^{2\pi} \cos^{2} \theta \, d\theta \right) \left(\int_{0}^{\pi} \sin^{3} \phi \, d\phi \right) \left(\int_{0}^{2} \rho^{4} \, d\rho \right) \\ &= \left(\frac{4}{3} \right) (\pi) \left(\frac{32}{5} \right) \\ &= \frac{128\pi}{15}. \end{split}$$

NAME: