Math 102 Calculus - Homework 2 - Due on 21 July 2006 Friday, class time

8-1 Evaluate the integral $\int_{C} x d s$ where C is the curve of intersection of the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$ in the first octant and the curve is oriented from $(1,0,0)$ towards $(0,1,1)$.

Solution: We can parameterize the curve as $x=\sqrt{1-t^{2}}, y=t, z=t$ with $0 \leq t \leq 1$. Then $|v(t)|=\sqrt{2-t^{2}} / \sqrt{1-t^{2}}$ and the integral becomes $\int_{0}^{1} \sqrt{2-t^{2}} d t=$ $2 \int_{0}^{\pi / 4} \cos ^{2} \theta d \theta=\frac{\pi}{4}+\frac{1}{2}$.

8-2 Let C be the unit circle in the plane traversed in the counterclockwise direction, and let \mathbf{T} denote its unit tangent vector and \mathbf{n} denote its unit outward normal vector. Let $f(x, y)=\ln \sqrt{x^{2}+y^{2}}$. Calculate the following integrals:

$$
\int_{C} \nabla f \cdot \mathbf{T} d s \text { and } \int_{C} \nabla f \cdot \mathbf{n} d s
$$

Solution: Parameterize the curve by $r(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$.

$$
\begin{aligned}
\int_{C} \nabla f \cdot \mathbf{T} d s & =\int_{0}^{2 \pi}\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right) d r(t)=\int_{0}^{2 \pi}(\cos t, \sin t) \cdot(-\sin t, \cos t) d t=0 \\
\int_{C} \nabla f \cdot \mathbf{n} d s & =\int_{0}^{2 \pi}\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)(d y(t),-d x(t))=\int_{0}^{2 \pi}(\cos t, \sin t) \cdot(\cos t, \sin t) d t \\
& =\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

Q-3 Show that $\omega=(y+z+y z \cos x y z) d x+(x+z+x z \cos x y z) d y+(y+x+x y \cos x y z) d z$ is exact and then evaluate the integral $\int_{(0,0,0)}^{(1,1 / 2, \pi)} \omega$.

Solution: Let $(M, N, P)=\omega$. Since $M_{y}=N_{x}, M_{z}=P_{x}$ and $N_{z}=P_{y}, \omega$ is exact. Then there exists a function $f(x, y, z)$ such that $\nabla f=\omega$, and the given integral has the value $f(1,1 / 2, \pi)-f(0,0,0)$.

Since $f_{x}=M, f=x y+x z+\sin x y z+g(y, z)$.
Since $f_{y}=N, g_{y}=z$ and $g(y, z)=y z+h(z)$.

Since $f_{z}=P, h^{\prime}(z)=0$ and $h(z)=c$ constant.
This gives $f=x y+y z+z x+\sin x y z+c$. Then the integral has the value $\frac{3}{2}(1+\pi)$.

Q-4 Among all simple closed smooth curves in the plane, oriented counterclockwise, find the one along which the work done by $\mathbf{F}=\left(\frac{x^{2} y}{9}\right) \mathbf{i}+\left(x-\frac{x y^{2}}{25}\right) \mathbf{j}$ is greatest. Calculate this greatest value.

Solution: Work $=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d x d y$, where C is the curve and R is its interior. curl $\mathbf{F}=N_{x}-M_{y}=1-x^{2} / 9-y^{2} / 25$ which is nonnegative only inside the ellipse $1=x^{2} / 9+y^{2} / 25$. The curl integral will be maximal if R is the whole of the interior of this ellipse. The curl integral over the interior of this ellipse can be calculated first by making the change of variables $x=3 u, y=5 v$, and then passing to polar coordinates, which eventually gives $15 \pi / 2$ as the greatest value.

The original version of this question was wrong. Any reasonable arguments you gave for that version will receive full credits.

Q-5 Find the area of the plate cut from the plane $3 x+4 y-5 z=6$ by the planes $x=0$, $y=0$ and $7 x+y=3$.

Solution: Let $f=3 x+4 y-5 z-6 . \nabla f=(3,4,-5), p=(0,0,1) .|\nabla f|=5 \sqrt{2},|\nabla f \cdot p|=5$. Let R be the triangular region in the xy-plane bounded by the coordinate axes and the $7 x+y=3$ line.

$$
\text { Area }=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot p|} d x d y=\sqrt{2} \iint_{R} d x d y=\sqrt{2} \operatorname{Area}(R)=\frac{9}{7 \sqrt{2}} .
$$

Please send comments and questions to sertoz@bilkent.edu.tr

