Math 102 Calculus - Homework 2 - Due on 21 July 2006 Friday, class time

Q-1 Evaluate the integral $\int_C x \, ds$ where *C* is the curve of intersection of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$ in the first octant and the curve is oriented from (1, 0, 0) towards (0, 1, 1).

Solution: We can parameterize the curve as $x = \sqrt{1-t^2}$, y = t, z = t with $0 \le t \le 1$. Then $|v(t)| = \sqrt{2-t^2}/\sqrt{1-t^2}$ and the integral becomes $\int_0^1 \sqrt{2-t^2} dt = 2\int_0^{\pi/4} \cos^2\theta \, d\theta = \frac{\pi}{4} + \frac{1}{2}$.

Q-2 Let *C* be the unit circle in the plane traversed in the counterclockwise direction, and let **T** denote its unit tangent vector and **n** denote its unit outward normal vector. Let $f(x, y) = \ln \sqrt{x^2 + y^2}$. Calculate the following integrals:

$$\int_C \nabla f \cdot \mathbf{T} \, ds \text{ and } \int_C \nabla f \cdot \mathbf{n} \, ds.$$

Solution: Parameterize the curve by $r(t) = (\cos t, \sin t), 0 \le t \le 2\pi$.

$$\begin{split} \int_{C} \nabla f \cdot \mathbf{T} \, ds &= \int_{0}^{2\pi} \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right) \, dr(t) = \int_{0}^{2\pi} (\cos t, \sin t) \cdot (-\sin t, \cos t) \, dt = 0. \\ \int_{C} \nabla f \cdot \mathbf{n} \, ds &= \int_{0}^{2\pi} \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right) \, (dy(t), -dx(t)) = \int_{0}^{2\pi} (\cos t, \sin t) \cdot (\cos t, \sin t) \, dt \\ &= \int_{0}^{2\pi} \, dt = 2\pi. \end{split}$$

Q-3 Show that $\omega = (y + z + yz \cos xyz)dx + (x + z + xz \cos xyz)dy + (y + x + xy \cos xyz)dz$ is exact and then evaluate the integral $\int_{(0,0,0)}^{(1,1/2,\pi)} \omega.$

Solution: Let $(M, N, P) = \omega$. Since $M_y = N_x$, $M_z = P_x$ and $N_z = P_y$, ω is exact. Then there exists a function f(x, y, z) such that $\nabla f = \omega$, and the given integral has the value $f(1, 1/2, \pi) - f(0, 0, 0)$.

Since $f_x = M$, $f = xy + xz + \sin xyz + g(y, z)$. Since $f_y = N$, $g_y = z$ and g(y, z) = yz + h(z). Since $f_z = P$, h'(z) = 0 and h(z) = c constant.

This gives $f = xy + yz + zx + \sin xyz + c$. Then the integral has the value $\frac{3}{2}(1 + \pi)$.

Q-4 Among all simple closed smooth curves in the plane, oriented counterclockwise, find the one along which the work done by $\mathbf{F} = \left(\frac{x^2y}{9}\right) \mathbf{i} + \left(x - \frac{xy^2}{25}\right) \mathbf{j}$ is greatest. Calculate this greatest value.

Solution: Work= $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int \int_R \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \, dx \, dy$, where *C* is the curve and *R* is its interior. curl $\mathbf{F} = N_x - M_y = 1 - x^2/9 - y^2/25$ which is nonnegative only inside the ellipse $1 = x^2/9 + y^2/25$. The curl integral will be maximal if *R* is the whole of the interior of this ellipse. The curl integral over the interior of this ellipse can be calculated first by making the change of variables x = 3u, y = 5v, and then passing to polar coordinates, which eventually gives $15\pi/2$ as the greatest value.

The original version of this question was wrong. Any reasonable arguments you gave for that version will receive full credits.

9-5 Find the area of the plate cut from the plane 3x + 4y - 5z = 6 by the planes x = 0, y = 0 and 7x + y = 3.

Solution: Let f = 3x + 4y - 5z - 6. $\nabla f = (3, 4, -5)$, p = (0, 0, 1). $|\nabla f| = 5\sqrt{2}$, $|\nabla f \cdot p| = 5$. Let *R* be the triangular region in the xy-plane bounded by the coordinate axes and the 7x + y = 3 line.

Area =
$$\int \int_R \frac{|\nabla f|}{|\nabla f \cdot p|} dx dy = \sqrt{2} \int \int_R dx dy = \sqrt{2} \operatorname{Area}(R) = \frac{9}{7\sqrt{2}}.$$

Please send comments and questions to sertoz@bilkent.edu.tr