Math 102 Calculus - Homework 2 - Due on 21 July 2006 Friday, class time

Q-1 Evaluate the integral $\int_{C} x d s$ where C is the curve of intersection of the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$ in the first octant and the curve is oriented from $(1,0,0)$ towards $(0,1,1)$.

Q-2 Let C be the unit circle in the plane traversed in the counterclockwise direction, and let \mathbf{T} denote its unit tangent vector and \mathbf{n} denote its unit outward normal vector. Let $f(x, y)=\ln \sqrt{x^{2}+y^{2}}$. Calculate the following integrals:

$$
\int_{C} \nabla f \cdot \mathbf{T} d s \text { and } \int_{C} \nabla f \cdot \mathbf{n} d s .
$$

9-3 Show that $\omega=(y+z+y z \cos x y z) d x+(x+z+x z \cos x y z) d y+(y+x+x y \cos x y z) d z$ is exact and then evaluate the integral $\int_{(0,0,0)}^{(1,1 / 2, \pi)} \omega$.

Q-4 Among all simple closed smooth curves in the plane, oriented counterclockwise, find the one along which the work done by $\mathbf{F}=\left(\frac{x^{2} y}{9}\right) \mathbf{i}+\left(x-\frac{y^{3}}{75}\right) \mathbf{j}$ is greatest. Calculate this greatest value.

Q-5 Find the area of the plate cut from the plane $3 x+4 y-5 z=6$ by the planes $x=0$, $y=0$ and $7 x+y=3$.

