Math 102 Calculus - Midterm Exam I - Solutions

Q-1-a) Find $\lim _{n \rightarrow \infty} \frac{n!n^{1 / n}}{n^{n}}$.
Solution: $\quad 0 \leq \frac{n!n^{1 / n}}{n^{n}}=\frac{1}{n} \frac{2}{n} \frac{3}{n} \cdots \frac{n-1}{n} \frac{n}{n} n^{1 / n}<\frac{1}{n} n^{1 / n} \rightarrow 0$ as $n \rightarrow \infty$, so the limit is zero.

Q-1-b) Does the series $\sum_{n=1}^{\infty} \frac{n!n^{1 / n}}{n^{n}}$ converge?
Solution: $\quad \frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{\frac{1}{n+1}}}{n^{\frac{1}{n}}} \cdot \frac{1}{(1+1 / n)^{n}} \rightarrow 1 / e$ as $n \rightarrow \infty$, therefore the series converges by the ratio test.

Q-2 Does the series $\sum_{n=1}^{\infty} \frac{3^{n}(n!)^{3}}{(3 n)!}$ converge?
Solution: $\quad \frac{a_{n+1}}{a_{n}}=\frac{3(n+1)^{3}}{27 n^{3}+\cdots} \rightarrow 1 / 9$ as $n \rightarrow \infty$, hence the series converges by the ratio test.

Q-3) Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1+1 / n}}$ converge absolutely or conditionally, or does it diverge ?
Solution: $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{1+1 / n}}}{\frac{1}{n}}=1$, so the series of absolute values diverges by the limit comparison test.

To check the convergence of the alternating series first consider the function $f(x)=x^{1+1 / x}$ for $x \geq 1$. We can easily see that $f^{\prime}(x)=x^{1+1 / x}\left(\frac{1+x-\ln x}{x^{2}}\right)>0$ for $x \geq 1$, which implies that $f(x)$ is increasing and $1 / f(x)$ is decreasing. Now we see that the series satisfies all the conditions of the alternating series test and converges.

Conclusion: The given series converges conditionally.
Note: Here we cannot apply p-test to $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$ since $1+1 / n$ is not fixed and for any $p>1$, we have $0<1+1 / n<p$ for large n.

Q-4) Find all values of x for which the power series $\sum_{n=1}^{\infty} \frac{n x^{n}}{3^{n}\left(n^{2}+n+1\right)}$ converges.
Solution: $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow|x| / 3$ as $n \rightarrow \infty$, so the series converges absolutely for all $|x|<3$.
When $x=3$, the series becomes $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+n+1\right)}$ and diverges by limit comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$.
When $x=-3$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\left(n^{2}+n+1\right)}$.
Here we first show that $\frac{n}{n^{2}+n+1}>\frac{n+1}{(n+1)^{2}+(n+1)+1}$ for $x \geq 1$.
Then we find that the series converges by the alternating series test.
Conclusion: The interval of convergence is $[-3,3)$.

Q-5) Find $\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{2 x \cos x-2 x+x^{3}}$.
Solution: Here we use Taylor series of $\sin x$ and $\cos x$ to obtain

$$
\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{2 x \cos x-2 x+x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{1}{20} x^{5}-\frac{1}{840} x^{7}+\cdots}{\frac{1}{12} x^{5}-\frac{1}{360} x^{7}+\cdots}=\lim _{x \rightarrow 0} \frac{x^{5}\left(\frac{1}{20}-\frac{1}{840} x^{2}+\cdots\right)}{x^{5}\left(\frac{1}{12}-\frac{1}{360} x^{2}+\cdots\right)}=\frac{3}{5} .
$$

