Date: July 18, 2007, Wednesday
Time: 9:30-11:30
Ali Sinan Sertöz
\qquad
\qquad

Math 102 Calculus II - Final Exam - Solutions

1	2	3	4	5	TOTAL
10	20	30	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Check the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdots(3 n)}{\pi^{n} n!}
$$

Solution: Use ratio test, $\frac{a_{n+1}}{a_{n}}=\frac{3 n+3}{\pi(n+1)} \rightarrow \frac{3}{\pi}<1$ as $n \rightarrow \infty$, to conclude that the series converges.

In fact, $a_{n}=\left(\frac{3}{\pi}\right)^{n}$, so the series is a geometric series which starts with $n=1$. The sum is then found to be $\frac{3}{\pi} \frac{1}{1-3 / \pi}=\frac{3}{\pi-3}$.

Q-2) Let S be the cap cut off from the hemisphere $x^{2}+y^{2}+z^{2}=R^{2}, z \geq 0$ by the cylindrical surface $x^{2}+y^{2}-R y=0$, where $R>0$. Find the surface area of S.

Solution: We first set $f=x^{2}+y^{2}+z^{2}-R^{2}$. Then $\frac{|\nabla f|}{|\nabla f \cdot p|}=\frac{R}{z}$.

$$
\begin{aligned}
\operatorname{Area}(S) & =2 \int_{0}^{R} \int_{0}^{\sqrt{R y-y^{2}}} \frac{R}{z} d x d y \\
& =2 R \int_{0}^{R} \int_{0}^{\sqrt{R y-y^{2}}} \frac{1}{\sqrt{R^{2}-x^{2}-y^{2}}} d x d y \\
& =2 R \int_{0}^{\pi / 2} \int_{0}^{R \sin \theta} \frac{r d r d \theta}{\sqrt{R^{2}-r^{2}}} \\
& =2 R \int_{0}^{\pi / 2}\left(-\left.\sqrt{R^{2}-r^{2}}\right|_{0} ^{R \sin \theta}\right) d \theta \\
& =2 R \int_{0}^{\pi / 2}(R-R \cos \theta) d \theta \\
& =2 R^{2}\left(\theta-\left.\sin \theta\right|_{0} ^{\pi / 2}\right) \\
& =R^{2}(\pi-2)
\end{aligned}
$$

If you choose to integrate from $\theta=0$ to $\theta=\pi$ from the beginning, then you should note that $\sqrt{\cos ^{2} \theta}=|\cos \theta|$ which is $\cos \theta$ when $0 \leq \theta \leq \pi / 2$ and $-\cos \theta$ when $\pi / 2 \leq \theta \leq \pi$.

Q-3) Among all rectangular regions $0 \leq x \leq a, 0 \leq y \leq b$, find the one for which the total outward flux

$$
\oint_{C} \mathbf{F} \cdot \overrightarrow{\mathbf{n}} d s
$$

of $\mathbf{F}=\left(\frac{2}{3} x^{3} y\right) \mathbf{i}+\left(2 x y^{3}-17 x y^{2}\right) \mathbf{j}$ across the four sides is least. Here C denotes the boundary of the given rectangle with the positive orientation.

Solution: The Green's theorem in the plane says that if $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$, then

$$
\oint_{C} \mathbf{F} \cdot \overrightarrow{\mathbf{n}} d s=\iint_{R_{a b}}\left(M_{x}+N_{y}\right) d x d y
$$

where $R_{a b}$ is the given rectangle with corners at the points $(0,0),(a, 0),(a, b)$ and $(0, b)$. We can calculate easily the above double integral;

$$
\begin{aligned}
\int_{0}^{b} \int_{0}^{a}\left(2 x^{2} y+6 x y^{2}-34 x y\right) d x d y & =\int_{0}^{b}\left(\frac{2}{3} a^{3} y+3 a^{2} y^{2}-17 a^{2} y\right) d x d y \\
& =\frac{1}{3} a^{3} b^{2}+a^{2} b^{3}-\frac{17}{2} a^{2} b^{2}
\end{aligned}
$$

We now must minimize $f(a, b)=\frac{1}{3} a^{3} b^{2}+a^{2} b^{3}-\frac{17}{2} a^{2} b^{2}$ where $a, b \geq 0$. On the boundary f is zero, so we look for interior critical points.
$f_{a}=a^{2} b^{2}+2 a b^{3}-17 a b^{2}=a b^{2}(a+2 b-17)=0$,
$f_{b}=\frac{2}{3} a^{3} b+3 a^{2} b^{2}-17 a^{2} b=\frac{1}{3} a^{2} b(2 a+9 b-51)=0$.
This gives $(a, b)=\left(\frac{51}{5}, \frac{17}{5}\right)$ as the only interior critical point.
We calculate easily that $f\left(\frac{51}{5}, \frac{17}{5}\right)=-\frac{51^{3} \cdot 17^{2}}{5^{5} \cdot 6}<0$. Since f is zero on the boundary and goes to infinity as a and b go to infinity, this critical point gives the global minimum.

Hence the required size of the rectangle giving the minimal flux is $a=\frac{51}{5}$ and $b=\frac{17}{5}$.

Q-4) For $0<\alpha<2$, define

$$
F(\alpha)=\int_{0}^{\alpha^{2}} \int_{0}^{\sqrt{y}} f d x d y+\int_{\alpha^{2}}^{8-\alpha^{2}} \int_{0}^{\alpha} f d x d y+\int_{8-\alpha^{2}}^{8} \int_{0}^{\sqrt{8-y}} f d x d y
$$

where $f=\frac{y \sin x}{4-x^{2}}$. Evaluate $F(\pi / 3)$.
Solution: The region of integration is the shaded region of the following figure.

Changing the order of integration on this region we find

$$
F(\alpha)=\int_{0}^{\alpha} \int_{x^{2}}^{8-x^{2}} \frac{\sin x}{4-x^{2}} y d y d x=8 \int_{0}^{\alpha} \sin x d x=8(1-\cos \alpha) .
$$

Now we easily calculate $F(\pi / 3)=4$.

Q-5) Let $\mathbf{F}=-y \ln \left(e+z^{2}\right) \mathbf{i}+x\left(x^{2}+y^{2}\right) \sec z \mathbf{j}+(x-y+z) \ln \left(4+x^{4}+y^{4}-z\right) \mathbf{k}$ be a field defined on the hemisphere S given by $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Calculate explicitly

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma .
$$

Solution: We use Stokes' theorem which says

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the boundary of S. In our case C corresponds to $z=0$, but then $\mathbf{F}=$ $-y \mathbf{i}+x\left(x^{2}+y^{2}\right) \mathbf{j}+(x-y) \ln \left(4+x^{4}+y^{4}\right) \mathbf{k}$.

A parametrization for the boundary is $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+0 \mathbf{k}$, for $0 \leq t \leq 2 \pi$. Then $d \mathbf{r}(t)=(-\sin t \mathbf{i}+\cos t \mathbf{j}+0 \mathbf{k}) d t$. Putting in the parametrization of the boundary into \mathbf{F} and calculating $\mathbf{F} \cdot d \mathbf{r}$ gives

$$
\mathbf{F} \cdot d \mathbf{r}=(-\sin t \mathbf{i}+\cos t \mathbf{j}+\text { something } \mathbf{k}) \cdot(-\sin t \mathbf{i}+\cos t \mathbf{j}+0 \mathbf{k}) d t=d t
$$

Hence the right hand side integral gives 2π as the final answer.

