Math 102 Calculus II - Homework I

Due on July 6, 2007 Friday 17:00

Q-1) For $0<\alpha<2$, define

$$
F(\alpha)=\int_{0}^{\alpha^{2}} \int_{0}^{\sqrt{y}} f d x d y+\int_{\alpha^{2}}^{8-\alpha^{2}} \int_{0}^{\alpha} f d x d y+\int_{8-\alpha^{2}}^{8} \int_{0}^{\sqrt{8-y}} f d x d y
$$

where $f=\frac{y \sin x}{4-x^{2}}$. Evaluate $F(\alpha)$ explicitly in terms of α.
Solution: The region of integration is the shaded region of the following figure.

Changing the order of integration on this region we find

$$
F(\alpha)=\int_{0}^{\alpha} \int_{x^{2}}^{8-x^{2}} \frac{\sin x}{4-x^{2}} y d y d x=8 \int_{0}^{\alpha} \sin x d x=8(1-\cos \alpha) .
$$

Q-2) Find the area of the region common to the cardioids $r=1+\sin \theta$ and $r=1+\cos \theta$.
Solution: The two cardioids intersect as follows:

The common area can be found as:

$$
\int_{-3 \pi / 4}^{\pi / 4} \int_{0}^{1+\sin \theta} r d r d \theta+\int_{\pi / 4}^{5 \pi / 4} \int_{0}^{1+\cos \theta} r d r d \theta=2\left(\frac{3 \pi}{4}-\sqrt{2}\right) \approx 1.88
$$

Q-3) Let $F(a)$ denote the volume of the region common to the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=a^{2}$, where $a \geq 1$. Write the integral expression for $F(a)$. Evaluate $F(1)$ explicitly. Using a computer software find a such that $F(a)=2 F(1)$.

Solution:

Two cylinders of the same radii in general intersect as follows:

In our case we find

$$
F(a)=8 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{a^{2}-x^{2}} d y d x=8 \int_{0}^{1} \sqrt{\left(1-x^{2}\right)\left(a^{2}-x^{2}\right)} d x .
$$

We easily find $F(1)=\frac{16}{3}$.
It turns out that if $a=\sqrt{3.143} \approx 1.77$, then $F(a) \approx 2 F(1)$.

Q-4) Find the volume of the region bounded from above by $x^{2}+y^{2}+z^{2}=4$, from below by $z=1$ and from the sides by $x^{2}+y^{2}-2 y=0$.

Solution:

The region is as follows.

The shadow of the $z=1$ base of the region in the $x y$-plane is as follows.

Note that the semicircle here is $x^{2}+y^{2}=3$ obtained by putting $z=1$ in the sphere equation.

Using the symmetry we set up the volume integral as

$$
2 \int_{0}^{3 / 2} \int_{0}^{\sqrt{2 y-y^{2}}} \int_{1}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y+2 \int_{3 / 2}^{\sqrt{3}} \int_{0}^{\sqrt{3-y^{2}}} \int_{1}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y
$$

Changing to cylindrical coordinates

$$
2 \int_{0}^{\pi / 3} \int_{0}^{2 \sin \theta} \int_{1}^{\sqrt{4-r^{2}}} r d z d r d \theta+2 \int_{\pi / 3}^{\pi / 2} \int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r d z d r d \theta
$$

and evaluating we find the first integral as $2\left(\frac{5 \pi}{9}-\frac{3 \sqrt{3}}{4}\right)$, and the second integral as $2\left(\frac{5 \pi}{36}\right)$.

Hence the volume is $\frac{25 \pi}{18}-\frac{3 \sqrt{3}}{2} \approx 1.76$.

Q-5) For $n \geq 2$, let V_{n} denote the volume of the region

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}
$$

For example $V_{2}=\pi$ and $V_{3}=4 \pi / 3$. Find V_{4} and V_{5}.

Solution:

Let $V_{n}(R)$ denote the volume of the region

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq R^{2}\right\}
$$

Note that
$V_{4}=V_{4}(1)=\int_{-1}^{1} \int_{-\sqrt{1-x_{4}^{2}}}^{\sqrt{1-x_{4}^{2}}} \int_{-\sqrt{1-x_{4}^{2}-x_{3}^{2}}}^{\sqrt{1-x_{4}^{2}-x_{3}^{2}}} \int_{-\sqrt{1-x_{4}^{2}-x_{3}^{2}-x_{2}^{2}}}^{\sqrt{1-x_{4}^{2}-x_{3}^{2}-x_{2}^{2}}} d x_{1} d x_{2} d x_{3} d x_{4}$
and the value in the box is precisely $V_{3}\left(\sqrt{1-x_{4}^{2}}\right)$ for which we have a formula,

$$
V_{3}(R)=\frac{4 \pi}{3} R^{3}, \text { so } V_{3}\left(\sqrt{1-x_{4}^{2}}\right)=\frac{4 \pi}{3}\left(1-x_{4}^{2}\right)^{3 / 2} .
$$

Hence

$$
V_{4}=\int_{-1}^{1} V_{3}\left(\sqrt{1-x_{4}^{2}}\right) d x_{4}=\left(\frac{4 \pi}{3}\right) \int_{-1}^{1}\left(1-x_{4}^{2}\right)^{3 / 2} d x_{4}=\left(\frac{3 \pi}{8}\right)\left(\frac{4 \pi}{3}\right)=\frac{\pi^{2}}{2}
$$

where we evaluate the integral with the substitution $x_{4}=\sin \theta$.
A similar line of argument gives $V_{4}\left(R^{2}\right)=\frac{\pi^{2}}{2} R^{4}$ which we need to calculate V_{5}.
Observe that

$$
\begin{aligned}
V_{5} & =V_{5}(1) \\
& \left.=\int_{-1}^{1} \int_{-\sqrt{1-x_{5}^{2}}}^{-\sqrt{1-x_{5}^{2}}} \int_{-\sqrt{1-x_{5}^{2}-x_{4}^{2}}}^{\sqrt{1-x_{5}^{2}-x_{4}^{2}}} \int_{-\sqrt{1-x_{5}^{2}-x_{4}^{2}-x_{3}^{2}}}^{\sqrt{1-x_{5}^{2}-x_{4}^{2}-x_{3}^{2}}} \int_{-\sqrt{1-x_{5}^{2}-x_{4}^{2}-x_{3}^{2}-x_{2}^{2}}}^{\sqrt{1-x_{5}^{2}-x_{4}^{2}-x_{3}^{2}-x_{2}^{2}}} d x_{1} d x_{2} d x_{3} d x_{4}\right] d x_{5} \\
& =\int_{-1}^{1} V_{4}\left(\sqrt{1-x_{5}^{2}}\right) d x_{5} \\
& =\frac{\pi^{2}}{2} \int_{-1}^{1}\left(1-x_{5}^{2}\right)^{2} d x_{5}=\frac{\pi^{2}}{2} \cdot \frac{16}{15} \\
V_{5} & =\frac{8 \pi^{2}}{15} .
\end{aligned}
$$

