Math 102 Calculus II – Homework I

Due on July 6, 2007 Friday 17:00

Q-1) For $0 < \alpha < 2$, define

$$F(\alpha) = \int_0^{\alpha^2} \int_0^{\sqrt{y}} f \, dx dy + \int_{\alpha^2}^{8-\alpha^2} \int_0^{\alpha} f \, dx dy + \int_{8-\alpha^2}^{8} \int_0^{\sqrt{8-y}} f \, dx dy$$

where $f = \frac{y \sin x}{4 - x^2}$. Evaluate $F(\alpha)$ explicitly in terms of α .

- **Q-2**) Find the area of the region common to the cardioids $r = 1 + \sin \theta$ and $r = 1 + \cos \theta$.
- **Q-3)** Let F(a) denote the volume of the region common to the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = a^2$, where $a \ge 1$. Write the integral expression for F(a). Evaluate F(1) explicitly. Using a computer software find a such that F(a) = 2F(1).
- **Q-4)** Find the volume of the region bounded from above by $x^2 + y^2 + z^2 = 4$, from below by z = 1 and from the sides by $x^2 + y^2 2y = 0$.
- **Q-5)** For $n \ge 2$, let V_n denote the *volume* of the region

 $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}.$

For example $V_2 = \pi$ and $V_3 = 4\pi/3$. Find V_4 and V_5 .

sertoz@bilkent.edu.tr