Due on July 6, 2007 Friday 17:00

Q-1) For $0<\alpha<2$, define

$$
F(\alpha)=\int_{0}^{\alpha^{2}} \int_{0}^{\sqrt{y}} f d x d y+\int_{\alpha^{2}}^{8-\alpha^{2}} \int_{0}^{\alpha} f d x d y+\int_{8-\alpha^{2}}^{8} \int_{0}^{\sqrt{8-y}} f d x d y
$$

where $f=\frac{y \sin x}{4-x^{2}}$. Evaluate $F(\alpha)$ explicitly in terms of α.

Q-2) Find the area of the region common to the cardioids $r=1+\sin \theta$ and $r=1+\cos \theta$.

Q-3) Let $F(a)$ denote the volume of the region common to the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=a^{2}$, where $a \geq 1$. Write the integral expression for $F(a)$. Evaluate $F(1)$ explicitly. Using a computer software find a such that $F(a)=2 F(1)$.

Q-4) Find the volume of the region bounded from above by $x^{2}+y^{2}+z^{2}=4$, from below by $z=1$ and from the sides by $x^{2}+y^{2}-2 y=0$.

Q-5) For $n \geq 2$, let V_{n} denote the volume of the region

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}
$$

For example $V_{2}=\pi$ and $V_{3}=4 \pi / 3$. Find V_{4} and V_{5}.

