Due on July 13, 2007 Friday 17:00

Q-1) Let $\mathbf{F}=x^{2} \mathbf{i}+z \mathbf{j}+y z \mathbf{k}$, and C the curve parametrized as $\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+t^{2} \mathbf{k}$ for $0 \leq t \leq \pi$. Evaluate the work integral

$$
\int \mathbf{F} \cdot \mathbf{T} d s
$$

on the curve C.

Solution:

$$
\begin{aligned}
\int \mathbf{F} \cdot \mathbf{T} d s & =\int \mathbf{F} \cdot d r \\
& =\int\left(x^{2}, z, y z\right) \cdot(d x, d y, d z) \\
& =\int_{0}^{\pi}\left(\cos ^{2} t, t^{2}, t^{2} \sin t\right) \cdot(-\sin t, \cos t, 2 t) d t \\
& =\int_{0}^{\pi}\left(\sin t \cos ^{2} t+t^{2} \cos t+2 t^{3} \sin t\right) d t \\
& =\left[\frac{1}{3} \cos ^{3} t+7 t^{2} \sin t-14 \sin t+14 t \cos t-\left.2 t^{3} \cos t\right|_{0} ^{\pi}\right] \\
& =-\frac{2}{3}+2 \pi^{3}-14 \pi \approx 17.36
\end{aligned}
$$

Q-2) Find a potential function $f(x, y, z)$ for the field $\mathbf{F}=\ln x \mathbf{i}+\cos (y+z) \mathbf{j}+(z+\cos (y+z)) \mathbf{k}$ such that $f\left(1, \frac{\pi}{2}-1,1\right)=-1$.

Solution: $\quad f_{x}(x, y, z)=\ln x$, so $f=x \ln x-x+\phi(y, z)$.
$f_{y}(x, y, z)=\phi_{y}(y, z)=\cos (y+z)$, so $\phi(y, z)=\sin (y+z)+\alpha(z)$, and this gives $f(x, y, z)=$ $x \ln x-x+\sin (y+z)+\alpha(z)$.
$f_{z}(x, y, z)=\cos (y+z)+\alpha^{\prime}(z)=\cos (y+z)+z$, so $\alpha(z)=\frac{1}{2} z^{2}+C$, and this gives $f(x, y, z)=x \ln x-x+\sin (y+z)+\frac{1}{2} z^{2}+C$.

And finally $f\left(1, \frac{\pi}{2}-1,1\right)=-1$ determines C as $-\frac{3}{2}$.

Q-3) Find the area enclosed by the simple curve C parametrized as $\mathbf{r}(t)=t^{4} \mathbf{i}+\left(t-t^{3}\right) \mathbf{j}$ for $-1 \leq t \leq 1$. May I remind you that area is and should be a non-negative number. If you find a negative number, you owe an explanation!

Solution: Let R be the region bounded by the curve C. Observe that the parametrization of C traverses the boundary of R in clockwise direction which is the reverse direction for the application of Green's theorem. Therefore we need the following minus sign in the formula

$$
\begin{aligned}
\operatorname{Area}(R) & =-\frac{1}{2} \int_{C} x d y-y d x \\
& =-\frac{1}{2} \int_{-1}^{1}\left[\left(t^{4}\right)\left(1-3 t^{2}\right)-\left(t-t^{3}\right)\left(4 t^{3}\right)\right] d t \\
& =-\frac{1}{2} \int_{-1}^{1}\left(-3 t^{4}+t^{6}\right) d t \\
& =-\frac{1}{2} \frac{-32}{35}=\frac{16}{35}
\end{aligned}
$$

Q-4) Let R_{α} be the region in the $x z$-plane bounded by the lines $z=\alpha x, z=1$ and $x=0$, where $\alpha \geq 1$. Let $A(\alpha)$ denote the area of the surface $z^{2}=x^{2}+y^{2}$ lying above R_{α}. First, without doing any calculations, find $A(1)$ and $\lim _{\alpha \rightarrow \infty} A(\alpha)$. Then calculate $A(\alpha)$ explicitly in terms of α. Check your answer with what you found above.

Solution:

$A(1)$ is the surface area of the cone lying in the first quadrant and below the plane $z=1$, which is $\pi /(2 \sqrt{2})$. When α goes to infinity, the line $z=\alpha x$ becomes the z-axis and then we have no area, giving $\lim _{\alpha \rightarrow \infty} A(\alpha)=0$.

We now calculate the surface area of the cone over the region R_{α}. Here $f=x^{2}+y^{2}-z^{2}$, $\nabla f=(2 x, 2 y,-2 z),|\nabla f|=2 \sqrt{2} z, p=(0,1,0)$.

$$
\begin{aligned}
A(\alpha) & =\iint_{R_{\alpha}} \frac{|\nabla f|}{|\nabla f \cdot p|} d A \\
& =\sqrt{2} \int_{0}^{1 / \alpha} \int_{\alpha x}^{1} \frac{z}{\sqrt{z^{2}-x^{2}}} d z d x \\
& =\sqrt{2} \int_{0}^{1 / \alpha}\left(\left.\sqrt{z^{2}-x^{2}}\right|_{z=\alpha x} ^{z=1}\right) d x \\
& =\sqrt{2} \int_{0}^{1 / \alpha}\left(\sqrt{1-x^{2}}-\sqrt{\alpha^{2}-1} x\right) d x \\
& =\sqrt{2}\left(\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \arcsin x-\left.\frac{\sqrt{\alpha^{2}-1}}{2} x^{2}\right|_{0} ^{1 / \alpha}\right) \\
& =\frac{1}{\sqrt{2}} \arcsin \frac{1}{\alpha} .
\end{aligned}
$$

Q-5) Let $\mathbf{F}=x \ln \left(1+z^{2}\right) \mathbf{i}+y \tan z \cos x \mathbf{j}+z \ln \left(4+x^{4}+y^{4}\right) \mathbf{k}$ be a field defined on the hemisphere S given by $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Calculate explicitly

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma .
$$

Solution: We use Stokes' theorem which says

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r},
$$

where C is the boundary of S. But in our case C corresponds to $z=0$ when $\mathbf{F}=0$, so the required integral is zero.

