Due on July 13, 2007 Friday 17:00

Q-1) Let $\mathbf{F} = x^2 \mathbf{i} + z \mathbf{j} + yz \mathbf{k}$, and *C* the curve parametrized as $\mathbf{r} = \cos t \mathbf{i} + \sin t \mathbf{j} + t^2 \mathbf{k}$ for $0 \le t \le \pi$. Evaluate the work integral

$$\int \mathbf{F} \cdot \mathbf{T} \, ds$$

on the curve C.

- **Q-2)** Find a potential function f(x, y, z) for the field $\mathbf{F} = \ln x \mathbf{i} + \cos(y+z) \mathbf{j} + (z + \cos(y+z)) \mathbf{k}$ such that $f(1, \frac{\pi}{2} 1, 1) = -1$.
- **Q-3)** Find the area enclosed by the simple curve C parametrized as $\mathbf{r}(t) = t^4 \mathbf{i} + (t t^3) \mathbf{j}$ for $-1 \le t \le 1$. May I remind you that area is and should be a non-negative number. If you find a negative number, you owe an explanation!
- **Q-4)** Let R_{α} be the region in the *xz*-plane bounded by the lines $z = \alpha x$, z = 1 and x = 0, where $\alpha \ge 1$. Let $A(\alpha)$ denote the area of the surface $z^2 = x^2 + y^2$ lying above R_{α} . First, without doing any calculations, find A(1) and $\lim_{\alpha \to \infty} A(\alpha)$. Then calculate $A(\alpha)$ explicitly in terms of α . Check your answer with what you found above.
- **Q-5)** Let $\mathbf{F} = x \ln(1+z^2) \mathbf{i} + y \tan z \cos x \mathbf{j} + z \ln(4+x^4+y^4) \mathbf{k}$ be a field defined on the hemisphere S given by $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Calculate explicitly

$$\int \int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

sertoz@bilkent.edu.tr