Due on July 13, 2007 Friday 17:00

Q-1) Let $\mathbf{F}=x^{2} \mathbf{i}+z \mathbf{j}+y z \mathbf{k}$, and C the curve parametrized as $\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+t^{2} \mathbf{k}$ for $0 \leq t \leq \pi$. Evaluate the work integral

$$
\int \mathbf{F} \cdot \mathbf{T} d s
$$

on the curve C.

Q-2) Find a potential function $f(x, y, z)$ for the field $\mathbf{F}=\ln x \mathbf{i}+\cos (y+z) \mathbf{j}+(z+\cos (y+z)) \mathbf{k}$ such that $f\left(1, \frac{\pi}{2}-1,1\right)=-1$.

Q-3) Find the area enclosed by the simple curve C parametrized as $\mathbf{r}(t)=t^{4} \mathbf{i}+\left(t-t^{3}\right) \mathbf{j}$ for $-1 \leq t \leq 1$. May I remind you that area is and should be a non-negative number. If you find a negative number, you owe an explanation!

Q-4) Let R_{α} be the region in the $x z$-plane bounded by the lines $z=\alpha x, z=1$ and $x=0$, where $\alpha \geq 1$. Let $A(\alpha)$ denote the area of the surface $z^{2}=x^{2}+y^{2}$ lying above R_{α}. First, without doing any calculations, find $A(1)$ and $\lim _{\alpha \rightarrow \infty} A(\alpha)$. Then calculate $A(\alpha)$ explicitly in terms of α. Check your answer with what you found above.

Q-5) Let $\mathbf{F}=x \ln \left(1+z^{2}\right) \mathbf{i}+y \tan z \cos x \mathbf{j}+z \ln \left(4+x^{4}+y^{4}\right) \mathbf{k}$ be a field defined on the hemisphere S given by $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Calculate explicitly

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma .
$$

