Date: July 26, 2008, Saturday
Time: 15:00-17:00
Ali Sinan Sertöz
\qquad
\qquad

Math 102 Calculus II - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) For any ϵ with $0<\epsilon<\pi / 6$, define the region R_{ϵ} as the region in \mathbb{R}^{2} bounded by the curves $y=1 / x, y=2 / x, x=\epsilon$ and $x=\pi / 6$. Calculate

$$
\lim _{\epsilon \rightarrow 0} \iint_{R_{\epsilon}} x^{2} \sec ^{2}\left(x^{2} y\right) d x d y
$$

Solution:

$$
\begin{aligned}
\iint_{R_{\epsilon}} x^{2} \sec ^{2}\left(x^{2} y\right) d x d y & =\int_{\epsilon}^{\pi / 6} \int_{1 / x}^{2 / x} x^{2} \sec ^{2}\left(x^{2} y\right) d y d x \\
& =\int_{\epsilon}^{\pi / 6}\left[\left.\tan \left(x^{2} y\right)\right|_{1 / x} ^{2 / x}\right] d x \\
& =\int_{\epsilon}^{\pi / 6}(\tan (2 x)-\tan (x)) d x \\
& =\left[-\frac{1}{2} \ln \cos 2 x+\left.\ln \cos x\right|_{\epsilon} ^{\pi / 6}\right] \\
& =\frac{1}{2} \ln \frac{3}{2}-\left[-\frac{1}{2} \ln \cos 2 \epsilon+\ln \cos \epsilon\right]
\end{aligned}
$$

And since \ln and cos are continuous functions,

$$
\lim _{\epsilon \rightarrow 0} \iint_{R_{\epsilon}} x^{2} \sec ^{2}\left(x^{2} y\right) d x d y=\frac{1}{2} \ln \frac{3}{2}
$$

Q-2) Find the volume of the region bounded by the paraboloid $x^{2}+y^{2}+z=4$ and the cylinder $x^{2}-2 y+y^{2}=0$ above the $x y$-plane.

Hint: $\int \sin ^{4} t d t=\frac{3 t}{8}-\sin (2 t)\left(\frac{3}{16}+\frac{1}{8} \sin ^{2} t\right)+C$.

Solution:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \int_{-\sqrt{2 y-y^{2}}}^{\sqrt{2 y-y^{2}}} \int_{0}^{4-x^{2}-y^{2}} d z d x d y \\
& =\int_{0}^{\pi} \int_{0}^{2 \sin \theta}\left(4-r^{2}\right) r d r d \theta \\
& =\int_{0}^{\pi}\left[2 r^{2}-\left.\frac{1}{4} r^{4}\right|_{0} ^{2 \sin \theta}\right] d \theta \\
& =\int_{0}^{\pi}\left(8 \sin ^{2} \theta-4 \sin ^{4} \theta\right) d \theta \\
& =\left[\sin ^{3} \theta \cos \theta-\frac{5}{2} \sin \theta \cos \theta+\left.\frac{5 t}{2}\right|_{0} ^{\pi}\right] \\
& =\frac{5 \pi}{2}
\end{aligned}
$$

Q-3) Let C be the curve parameterized as $r(\theta)=\left(\frac{\theta}{8}, \sin ^{2} \theta, 1-\cos ^{4} \theta\right)$, with $0 \leq \theta \leq 2 \pi$. Calculate

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

where $\mathbf{F}=\left(-\tan \left(x+y^{2}+z^{3}\right),-2 y \tan \left(x+y^{2}+z^{3}\right),-3 z^{2} \tan \left(x+y^{2}+z^{3}\right)\right)$.
Solution: In the last homework we showed that this is a conservative field with potential function $f=\ln \cos \left(x+y^{2}+z^{3}\right)+C$. This gives

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=f(r(2 \pi))-f(r(0))=f(\pi / 4,0,0)-f(0,0,0)=-\frac{1}{2} \ln 2 .
$$

Q-4) Find the surface area of the piece of the paraboloid $x^{2}+y^{2}+z=4$ with $z \geq 0$.
Solution: If $f=x^{2}+y^{2}+z-4$ and D is the projection of the paraboloid S to $x y$-plane, then the surface area is given by

$$
\begin{aligned}
\int_{S} d \sigma & =\int_{D} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta \\
& =(2 \pi)\left[\left.\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right|_{0} ^{2}\right] \\
& =\frac{\pi}{6}(17 \sqrt{17}-1) .
\end{aligned}
$$

Q-5) Evaluate the integral

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where S is the level surface given by $x^{2}+z^{2}-4+y^{4}=0, y \geq 0$,

$$
\mathbf{F}=\left(x^{2} z+\ln \left(y^{2}+1\right), \cosh \left(x^{2}+y^{2}\right)-\ln \left(z^{2}+1\right), \frac{y^{3}}{y^{2}+1}-x z^{2}\right)
$$

and \mathbf{n} is the unit normal of S pointing out.
Solution: Let $D=\left\{(x, z) \in \mathbb{R}^{2} \mid x^{2}+z^{2} \leq 4\right\}$ and let $C=\partial D$. Then using Stokes' theorem twice, we find that

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma & =\int_{C} \mathbf{F} \cdot \mathbf{T} d s \\
& =\iint_{D} \nabla \times \mathbf{F} \cdot \mathbf{n}_{\mathbf{1}} d \sigma
\end{aligned}
$$

where \mathbf{n}_{1} is the unit normal of D pointing towards y-direction to be compatible with the orientation on C which in turn is induced by \mathbf{n}. Thus $\mathbf{n}_{\mathbf{1}}=\mathbf{j}$ and $\nabla \times \mathbf{F} \cdot \mathbf{n}_{\mathbf{1}}=x^{2}+z^{2}$. This gives

$$
\begin{aligned}
\iint_{D} \nabla \times \mathbf{F} \cdot \mathbf{n}_{\mathbf{1}} d \sigma & =\iint_{D}\left(x^{2}+z^{2}\right) d x d z \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r^{3} d r d \theta \\
& =(2 \pi)\left(\frac{16}{4}\right)=8 \pi
\end{aligned}
$$

