Math 102 Homework-1 - Solutions

Due Date: 14 July 2008 Monday

Q-1) Let $f(x, y)=y^{2} \sin \left(\frac{x y^{2} \pi}{6}\right)$. Evaluate the following integral:

$$
\mathbf{I}=\int_{1 / 2}^{1} \int_{1 / x}^{2} f(x, y) d y d x+\int_{1}^{3} \int_{1}^{2} f(x, y) d y d x+\int_{3}^{6} \int_{1}^{6 / x} f(x, y) d y d x
$$

Solution: Sketch the region, reverse the order of integration to get

$$
\begin{aligned}
\mathbf{I} & =\int_{1}^{2} \int_{1 / y}^{6 / y} y^{2} \sin \left(\frac{x y^{2} \pi}{6}\right) d x d y \\
& =\int_{1}^{2}\left(-\left.\frac{6 \cos \left(x y^{2} \pi / 6\right)}{\pi}\right|_{1 / y} ^{6 / y}\right) \\
& =\frac{6}{\pi} \int_{1}^{2}(\cos (y \pi / 6)-\cos (y \pi)) d y \\
& =\frac{6}{\pi^{2}}\left(\left.(6 \sin (y \pi / 6)-\sin (y \pi))\right|_{1} ^{2}\right) \\
& =\frac{18(\sqrt{3}-1)}{\pi^{2}} \approx 1.33
\end{aligned}
$$

Q-2) Find the area, in the first quadrant, that is both inside the circle $r=\sqrt{2}$ and the lemniscate $r=\sqrt{4 \cos 2 \theta}$.

Solution: These curves intersect when $\theta=\pi / 6$. From $\theta=0$ to $\theta=\pi / 6$, it is the area of the circle, and from $\theta=\pi / 6$ to $\theta=\pi / 4$, it is the area of the lemniscate which constitute the common area. Hence

$$
\text { Area }=\frac{\pi}{6}+\int_{\pi / 6}^{\pi / 4} \int_{0}^{\sqrt{4 \cos 2 \theta}} r d r d \theta=\frac{\pi}{6}+1-\frac{\sqrt{3}}{2} \approx 0.657
$$

Q-3) Set up an integral to evaluate the volume of the region common to two right circular cylinders, of radii a and b where $a>b>0$, intersecting orthogonally along their central axes.

Solution: Assume that the cylinders are $x^{2}+y^{2}=a^{2}$ and $y^{2}+z^{2}=b^{2}$. Then one eighth of the volume is given by the integral

$$
\int_{0}^{b} \int_{0}^{\sqrt{b^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-y^{2}}} d x d z d y=\int_{0}^{b} \sqrt{\left(a^{2}-y^{2}\right)\left(b^{2}-y^{2}\right)} d y
$$

Q-4) Find the volume of the region bounded from above by $x^{2}+y^{2}+z^{2}=4$, from below by $z=1$, and from the sides by $x^{2}+y^{2}-2 y=0$.

Solution: If you plot the region carefully, you will see that the volume is given by

$$
2 \int_{0}^{3 / 2} \int_{0}^{\sqrt{2 y-y^{2}}} \int_{1}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y+2 \int_{3 / 2}^{\sqrt{3}} \int_{0}^{\sqrt{3-y^{2}}} \int_{1}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y
$$

After changing to cylindrical coordinates and evaluating these integrals you will find that their values are

$$
2\left(\frac{5 \pi}{9}-\frac{3 \sqrt{3}}{4}\right)+2\left(\frac{5 \pi}{36}\right)=\frac{25 \pi-27 \sqrt{3}}{18} \approx 1.765
$$

Q-5) Evaluate the integral

$$
\iint_{R} \sin ^{2}\left(\frac{x+y}{x-y}\right) d A
$$

where R is the convex quadrilateral region with vertices at the points $(1,0),(2,0),(0,-2),(0,-1)$.

Solution: First apply the change of coordinates with $u=x+y$ and $v=x-y$. Then the integral becomes

$$
\begin{aligned}
\iint_{R} \sin ^{2}\left(\frac{x+y}{x-y}\right) d A & =\frac{1}{2} \int_{1}^{2} \int_{-v}^{v} \sin ^{2}\left(\frac{u}{v}\right) d u d v \\
& =\frac{1}{2} \int_{1}^{2} \int_{-v}^{v}\left(\frac{1}{2}-\frac{1}{2} \cos \left(\frac{2 u}{v}\right)\right) d u d v \\
& =\frac{3}{4}-\frac{3}{8} \sin 2 \approx 0.409
\end{aligned}
$$

Please send comments and questions to sertoz@bilkent.edu.tr

