Either hand in your homework solutions in class or put them in my mail box until 17:00 on Wednesday.

Q-1) Show that the vector field

$$
\mathbf{F}=\left(-\tan \left(x+y^{2}+z^{3}\right),-2 y \tan \left(x+y^{2}+z^{3}\right),-3 z^{2} \tan \left(x+y^{2}+z^{3}\right)\right)
$$

is conservative. Find a potential function for \mathbf{F} and evaluate the integral

$$
\int_{(0,0,0)}^{(1,2,3)} \mathbf{F} \cdot \mathbf{T} d \sigma
$$

Solution: A potential function for this field is $f=\ln \cos \left(x+y^{2}+z^{3}\right)+C$. The integral then has the values $f(1,2,3)-f(0,0,0)=\ln \cos 32 \approx-0.181$.

Q-2) let $\mathbf{F}=\left(\frac{2 x}{x^{2}+y^{4}}, \frac{4 y^{3}}{x^{2}+y^{4}}\right)$. Evaluate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where C is the circle of radius R centered at the origin. Beware here that the Green's theorem does not hold since \mathbf{F} is not defined at the origin. Observe that in this problem $M_{y}=N_{x}$ for the vector field $\mathbf{F}=(\mathbf{M}, \mathbf{N})$. Suppose you have the task of providing such vector fields on demand. How would you construct such vector fields without much effort? How did I invent the above vector field?

Solution: Let R_{ϵ} be the rectangle formed by the lines $x= \pm \epsilon$ and $y= \pm \epsilon$ where $\epsilon>0$ is small enough that the rectangle R_{ϵ} totally lies inside C. Then Green's theorem applies to the region bounded by C and R_{ϵ} and since $M_{y}=N_{x}$, where $\mathbf{F}=(M, N)$, we must have

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{R_{\epsilon}} \mathbf{F} \cdot \mathbf{T} d s
$$

where R_{ϵ} is positively oriented. But using the obvious parametrization for each side of R_{ϵ}, we find that $\int_{R_{\epsilon}} \mathbf{F} \cdot \mathbf{T} d s=0$ since on each side we are integrating an odd function on $[-1,1]$. This gives

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=0 .
$$

To generate such vector fields, start with any function and calculate its gradient. For example the above vector field is the gradient of $\ln \left(x^{2}+y^{4}\right)$. If the function is not defined at the origin, then its gradient also fails to be defined there.

Q-3) Find the area of the surface S cut from the cone $z^{2}=4 x^{2}+4 y^{2}, z \geq 0$, by the cylinder $x^{2}+y^{2}=2 x$.

Solution: Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=2 x\right\}$, and let $f=4 x^{2}+4 y^{2}-z^{2}$. Then the surface is given by $f=0$ over D.
$d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\sqrt{5} d A$. Thus

$$
\text { Surface area }=\int_{S} d \sigma=\int_{D} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\sqrt{5} \int_{D} d A=\sqrt{5} \pi \text {. }
$$

Q-4) Evaluate the integral

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where S is the level surface given by $x^{2}+z^{2}-4(x+z)-y+8=0,0 \leq y \leq 4$, and

$$
\mathbf{F}=\left(x^{2} z+\ln \left(y^{2}+1\right), \cosh \left(x^{2}+y^{2}\right)-\ln \left(z^{2}+1\right), \frac{y^{3}}{y^{2}+1}-x z^{2}\right) .
$$

Solution: Let $D=\left\{(x, z) \in \mathbb{R}^{2} \mid(x-2)^{2}+(z-2)^{2} \leq 4\right\}$ and let the boundary of D be C. Then applying Stokes' theorem twice we get

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma & =\int_{C} \mathbf{F} \cdot \mathbf{T} d s \\
& =\iint_{D} \nabla \times \mathbf{F} \cdot \mathbf{n}_{\mathbf{1}} d \sigma
\end{aligned}
$$

where $\mathbf{n}_{\mathbf{1}}$ is the unit normal of D pointing towards y-direction to be compatible with the orientation on C which in turn is induced by \mathbf{n}. Thus $\mathbf{n}_{\mathbf{1}}=\mathbf{j}$ and $\nabla \times \mathbf{F} \cdot \mathbf{n}_{\mathbf{1}}=x^{2}+z^{2}$. This gives

$$
\begin{aligned}
\iint_{D} \nabla \times \mathbf{F} \cdot \mathbf{n}_{1} d \sigma & =\iint_{D}\left(x^{2}+z^{2}\right) d x d z \\
& =\int_{0}^{4} \int_{2-\sqrt{4 z-z^{2}}}^{2+\sqrt{4 z-z^{2}}}\left(x^{2}+z^{2}\right) d x d z \\
& =40 \pi
\end{aligned}
$$

where the last line should be obtained through a computer algebra system.
An easy way to evaluate this integral by hand is to make the change of variables $X=x-2$ and $Z=z-2$, and change to polar coordinates in the new $X Z$ system. This gives the easy integral

$$
\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{2}+4 r(\cos \theta+\sin \theta)+8\right) r d r d \theta=40 \pi
$$

Another way to solve this problem is to use Stokes' theorem only once. Then we parameterize the boundary of S as

$$
\mathbf{r}(\theta)=(2+2 \sin \theta, 2,2+2 \cos \theta), \quad \theta \in[0,2 \pi] .
$$

Notice how the correct orientation of the boundary is provided by the parametrization. Now we have

$$
d \mathbf{r}=(2 \cos \theta, 0,-2 \sin \theta) d \theta,
$$

and $\mathbf{F} \cdot d \mathbf{r}$ then becomes
$(2 \cos \theta)\left((2+2 \sin \theta)^{2}(2+2 \cos \theta)+\ln 17\right)+(-2 \sin \theta)\left(\frac{64}{17}+(2+2 \sin \theta)(2+2 \cos \theta)^{2}\right)$.
Integrating this we get

$$
\int_{0}^{2 \pi} \mathbf{F} \cdot d \mathbf{r}=40 \pi
$$

Finally, you may try to evaluate the integral as is. Then you will get

$$
\nabla \times \mathbf{F}=\left[3 \frac{y^{2}}{y^{2}+1}-2 \frac{y^{4}}{\left(y^{2}+1\right)^{2}}+2 \frac{z}{z^{2}+1}, x^{2}+z^{2}, 2 \sinh \left(x^{2}+y^{2}\right) x-2 \frac{y}{y^{2}+1}\right]
$$

If $f=x^{2}+z^{2}-4(x+z)-y+8$, then the unit outward normal of S is in the direction of $-\nabla f$ where

$$
\nabla f=[2 x-4,-1,2 z-4] .
$$

You will have

$$
\nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\nabla \times \mathbf{F} \cdot \nabla f d x d z
$$

and the integral will be evaluated over the disk $(x-2)^{2}+(z-2)^{2} \leq 4$. You will also need to substitute y with $x^{2}+z^{2}-4(x+z)+8$ since the integrand lives on the surface S.

Putting these together, you will end up with the double integral

$$
\begin{gathered}
\int_{0}^{4} \int_{2-\sqrt{4 z-z^{2}}}^{2+\sqrt{4 z-z^{2}}}\left\{\left[3 \frac{\left(x^{2}+z^{2}-4 x-4 z+8\right)^{2}}{\left(x^{2}+z^{2}-4 x-4 z+8\right)^{2}+1}-2 \frac{\left(x^{2}+z^{2}-4 x-4 z+8\right)^{4}}{\left(\left(x^{2}+z^{2}-4 x-4 z+8\right)^{2}+1\right)^{2}}\right.\right. \\
\left.+2 \frac{z}{z^{2}+1}\right](-2 x+4)+x^{2}+z^{2} \\
+\left[2 \sinh \left(x^{2}+\left(x^{2}+z^{2}-4 x-4 z+8\right)^{2}\right) x\right. \\
\left.\left.\quad-2 \frac{x^{2}+z^{2}-4 x-4 z+8}{\left(x^{2}+z^{2}-4 x-4 z+8\right)^{2}+1}\right](-2 z+4)\right\} d x d z .
\end{gathered}
$$

An attempt to numerically evaluate this on Maple will give, after a long pause, 125 which is almost $40 \pi \approx 125.6$.

Q-5) Solve the very last problem of the book, exercise 21 on page 1228:
Show that the volume of a region D in space enclosed by the oriented surface S with outward normal \mathbf{n} satisfies the identity

$$
V=\frac{1}{3} \iint_{S} \mathbf{r} \cdot \mathbf{n} d \sigma
$$

where \mathbf{r} is the position vector of the point (x, y, z) in D.
Solution: Taking \mathbf{r} as the vector field \mathbf{F} of the divergence theorem, we find that

$$
\iint_{S} \mathbf{r} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{r} d V=\iiint_{D} 3 d V=3 V
$$

verifying the required equality.

Please send comments and questions to sertoz@bilkent.edu.tr

