
Math 102 Homework-2 Solutions
Due Date: 23 July 2008 Wednesday

Either hand in your homework solutions in class or put them in my mail box
until 17:00 on Wednesday.

Q-1) Show that the vector field

F =
(− tan(x + y2 + z3), −2y tan(x + y2 + z3), −3z2 tan(x + y2 + z3)

)

is conservative. Find a potential function for F and evaluate the integral

∫ (1,2,3)

(0,0,0)

F ·T dσ.

Solution: A potential function for this field is f = ln cos(x + y2 + z3) + C. The integral
then has the values f(1, 2, 3)− f(0, 0, 0) = ln cos 32 ≈ −0.181.

Q-2) let F =

(
2x

x2 + y4
,

4y3

x2 + y4

)
. Evaluate

∫

C

F · T ds, where C is the circle of radius R

centered at the origin. Beware here that the Green’s theorem does not hold since F is
not defined at the origin. Observe that in this problem My = Nx for the vector field
F = (M,N). Suppose you have the task of providing such vector fields on demand.
How would you construct such vector fields without much effort? How did I invent
the above vector field?

Solution: Let Rε be the rectangle formed by the lines x = ±ε and y = ±ε where ε > 0
is small enough that the rectangle Rε totally lies inside C. Then Green’s theorem applies
to the region bounded by C and Rε and since My = Nx, where F = (M,N), we must
have

∫

C

F ·T ds =

∫

Rε

F ·T ds

where Rε is positively oriented. But using the obvious parametrization for each side of
Rε, we find that

∫
Rε

F ·T ds = 0 since on each side we are integrating an odd function on
[−1, 1]. This gives

∫

C

F ·T ds = 0.

To generate such vector fields, start with any function and calculate its gradient. For
example the above vector field is the gradient of ln(x2 + y4). If the function is not defined
at the origin, then its gradient also fails to be defined there.



Q-3) Find the area of the surface S cut from the cone z2 = 4x2 +4y2, z ≥ 0, by the cylinder
x2 + y2 = 2x.

Solution: Let D = {(x, y) ∈ R2 | x2 + y2 = 2x }, and let f = 4x2 + 4y2 − z2. Then the
surface is given by f = 0 over D.

dσ =
|∇f |
|∇f · k|dA =

√
5dA. Thus

Surface area =

∫

S

dσ =

∫

D

|∇f |
|∇f · k|dA =

√
5

∫

D

dA =
√

5 π.

Q-4) Evaluate the integral

∫ ∫

S

∇× F · n dσ

where S is the level surface given by x2 + z2 − 4(x + z)− y + 8 = 0, 0 ≤ y ≤ 4, and

F =

(
x2z + ln(y2 + 1), cosh(x2 + y2)− ln(z2 + 1),

y3

y2 + 1
− xz2

)
.

Solution: Let D = {(x, z) ∈ R2 | (x − 2)2 + (z − 2)2 ≤ 4 } and let the boundary of D
be C. Then applying Stokes’ theorem twice we get

∫ ∫

S

∇× F · n dσ =

∫

C

F ·T ds

=

∫ ∫

D

∇× F · n1 dσ

where n1 is the unit normal of D pointing towards y-direction to be compatible with the
orientation on C which in turn is induced by n. Thus n1 = j and ∇× F · n1 = x2 + z2.
This gives

∫ ∫

D

∇× F · n1 dσ =

∫ ∫

D

(x2 + z2) dxdz

=

∫ 4

0

∫ 2+
√

4z−z2

2−√4z−z2

(x2 + z2) dxdz

= 40π,

where the last line should be obtained through a computer algebra system.

An easy way to evaluate this integral by hand is to make the change of variables X = x−2
and Z = z − 2, and change to polar coordinates in the new XZ system. This gives the
easy integral

∫ 2π

0

∫ 2

0

(r2 + 4r(cos θ + sin θ) + 8)rdrdθ = 40π.

Another way to solve this problem is to use Stokes’ theorem only once. Then we param-
eterize the boundary of S as

r(θ) = (2 + 2 sin θ, 2, 2 + 2 cos θ), θ ∈ [0, 2π].



Notice how the correct orientation of the boundary is provided by the parametrization.
Now we have

dr = (2 cos θ, 0, −2 sin θ) dθ,

and F · dr then becomes

(2 cos θ)
(
(2 + 2 sin θ)2(2 + 2 cos θ) + ln 17

)
+ (−2 sin θ)

(
64

17
+ (2 + 2 sin θ)(2 + 2 cos θ)2

)
.

Integrating this we get

∫ 2π

0

F · dr = 40π.

Finally, you may try to evaluate the integral as is. Then you will get

∇× F = [3
y2

y2 + 1
− 2

y4

(y2 + 1)2 + 2
z

z2 + 1
, x2 + z2, 2 sinh

(
x2 + y2

)
x− 2

y

y2 + 1
].

If f = x2 + z2 − 4(x + z) − y + 8, then the unit outward normal of S is in the direction
of −∇f where

∇f = [2 x− 4,−1, 2 z − 4].

You will have

∇× F · n dσ = ∇× F · ∇fdxdz

and the integral will be evaluated over the disk (x−2)2 +(z−2)2 ≤ 4. You will also need
to substitute y with x2 + z2 − 4(x + z) + 8 since the integrand lives on the surface S.

Putting these together, you will end up with the double integral

∫ 4

0

∫ 2+
√

4z−z2

2−√4z−z2

{[
3

(x2 + z2 − 4 x− 4 z + 8)
2

(x2 + z2 − 4 x− 4 z + 8)2 + 1
− 2

(x2 + z2 − 4 x− 4 z + 8)
4

(
(x2 + z2 − 4 x− 4 z + 8)2 + 1

)2

+2
z

z2 + 1

]
(−2 x + 4) + x2 + z2

+
[
2 sinh

(
x2 +

(
x2 + z2 − 4 x− 4 z + 8

)2
)

x

−2
x2 + z2 − 4 x− 4 z + 8

(x2 + z2 − 4 x− 4 z + 8)2 + 1

]
(−2 z + 4)

}
dxdz.

An attempt to numerically evaluate this on Maple will give, after a long pause, 125 which
is almost 40π ≈ 125.6.



Q-5) Solve the very last problem of the book, exercise 21 on page 1228:
Show that the volume of a region D in space enclosed by the oriented surface S with
outward normal n satisfies the identity

V =
1

3

∫ ∫

S

r · n dσ,

where r is the position vector of the point (x, y, z) in D.

Solution: Taking r as the vector field F of the divergence theorem, we find that

∫ ∫

S

r · n dσ =

∫ ∫ ∫

D

∇ · r dV =

∫ ∫ ∫

D

3 dV = 3V,

verifying the required equality.

Please send comments and questions to sertoz@bilkent.edu.tr


