Q-1) Show that the vector field

$$
\mathbf{F}=\left(-\tan \left(x+y^{2}+z^{3}\right),-2 y \tan \left(x+y^{2}+z^{3}\right),-3 z^{2} \tan \left(x+y^{2}+z^{3}\right)\right)
$$

is conservative. Find a potential function for \mathbf{F} and evaluate the integral

$$
\int_{(0,0,0)}^{(1,2,3)} \mathbf{F} \cdot \mathbf{T} d \sigma
$$

Q-2) let $\mathbf{F}=\left(\frac{2 x}{x^{2}+y^{4}}, \frac{4 y^{3}}{x^{2}+y^{4}}\right)$. Evaluate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where C is the circle of radius R centered at the origin. Beware here that the Green's theorem does not hold since \mathbf{F} is not defined at the origin. Observe that in this problem $M_{y}=N_{x}$ for the vector field $\mathbf{F}=(\mathbf{M}, \mathbf{N})$. Suppose you have the task of providing such vector fields on demand. How would you construct such vector fields without much effort? How did I invent the above vector field?

Q-3) Find the area of the surface S cut from the cone $z^{2}=4 x^{2}+4 y^{2}, z \geq 0$, by the cylinder $x^{2}+y^{2}=2 x$.

Q-4) Evaluate the integral

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where S is the level surface given by $x^{2}+z^{2}-4(x+z)-y+8=0,0 \leq y \leq 4$, and

$$
\mathbf{F}=\left(x^{2} z+\ln \left(y^{2}+1\right), \cosh \left(x^{2}+y^{2}\right)-\ln \left(z^{2}+1\right), \frac{y^{3}}{y^{2}+1}-x z^{2}\right) .
$$

Q-5) Solve the very last problem of the book, exercise 21 on page 1228.

