Date: June 19, 2008, Thursday
Time: 9:30-11:30
Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

Math 102 Calculus II - Midterm Exam I

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Find $\lim _{n \rightarrow \infty} a_{n}$, where $a_{n}=(\ln n)^{1 / \ln n}, n=2,3, \ldots$.

Solution:

You can consider $\ln a_{n}=\frac{\ln (\ln n)}{\ln n}$ and use L'Hopital's rule as $n \rightarrow \infty$. This will give $\lim _{n \rightarrow \infty} a_{n}=1$

Q-2) Check the following series for converge:

$$
\sum_{n=1}^{\infty} \frac{\ln n}{\left(19 n^{2}+6 n+2008\right)}
$$

Solution:

Limit compare with $\sum \frac{\ln n}{n^{2}}$ which converges by the integral test, to conclude that the given series converges.

Q-3) Find the sum

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)}
$$

Solution:

$$
\frac{n}{(n+1)(n+2)(n+3)}=\frac{-1 / 2}{n+1}+\frac{2}{n+2}+\frac{-3 / 2}{n+3} .
$$

Adding these from $n=1$ to $n=k$ we find

$$
s_{k}=\frac{1}{4}-\frac{3+2 k}{2(2+k)(3+k)}
$$

Hence the sum is $\lim _{k \rightarrow \infty} s_{k}=\frac{1}{4}$.

Q-4) Find the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} x^{n}$. (10 points)
Check the convergence of the series at the end points. (10 points)
Hint: $f(x)=(1+1 / x)^{x}$ is an increasing function for $x>1$.

Solution:

Let $a_{n}=\frac{n!}{n^{n}} x^{n}$ and use ratio test for the absolute values. $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x|}{(1+1 / n)^{n}} \rightarrow|x| / e$ as $n \rightarrow \infty$.

For absolute convergence we must have $|x|<e$. So the radius of convergence is e.
When $x= \pm e$, we have $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{e}{(1+1 / n)^{n}}>1$, using the hint. Hence $a_{n}>a_{1}$ for all n and the general term a_{n} does not converge to zero as n goes to infinity, and the series diverges at the end points.

Q-5) Find the values of c and d (5 points each) such that the following limit exists and is finite. For those values of c and d find the limit. (10 points)

$$
\lim _{x \rightarrow 0}\left(\frac{\cos \left(x^{2}\right)}{x^{8}}+\frac{c \sin x}{x^{2}}+\frac{d+c x^{4}}{x^{8}}-\frac{1}{2 x}+\frac{d}{c}\right)
$$

Solution:

The expression in the limit has the Taylor expansion

$$
\left((1+d) x^{-8}+\left(-\frac{1}{2}+c\right) x^{-4}+\left(-\frac{1}{2}+c\right) x^{-1}+\frac{d}{c}+\frac{1}{24}-\frac{1}{6} c x+\frac{1}{120} c x^{3}+\cdots\right)
$$

For the limit to exist and be finite we need to have $d=-1$ and $c=1 / 2$. And in that case the limit is $-\frac{47}{24}$.

