NAME:	•
-------	---

STUDENT NO:

Math 102 Calculus II – Midterm Exam I

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Find $\lim_{n \to \infty} a_n$, where $a_n = (\ln n)^{1/\ln n}$, n = 2, 3, ...

Solution:

You can consider $\ln a_n = \frac{\ln(\ln n)}{\ln n}$ and use L'Hopital's rule as $n \to \infty$. This will give $\lim_{n \to \infty} a_n = 1$

Q-2) Check the following series for converge:

$$\sum_{n=1}^{\infty} \frac{\ln n}{(19n^2 + 6n + 2008)}$$

Solution:

Limit compare with $\sum \frac{\ln n}{n^2}$ which converges by the integral test, to conclude that the given series converges.

NAME:

STUDENT NO:

Q-3) Find the sum

$$\sum_{n=1}^\infty \frac{n}{(n+1)(n+2)(n+3)}$$

Solution:

$$\frac{n}{(n+1)(n+2)(n+3)} = \frac{-1/2}{n+1} + \frac{2}{n+2} + \frac{-3/2}{n+3}.$$

Adding these from n = 1 to n = k we find

$$s_k = \frac{1}{4} - \frac{3+2k}{2(2+k)(3+k)}$$

Hence the sum is $\lim_{k \to \infty} s_k = \frac{1}{4}$.

NAME:

Q-4) Find the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$. (10 points) Check the convergence of the series at the end points. (10 points)

Hint: $f(x) = (1 + 1/x)^x$ is an increasing function for x > 1.

Solution:

Let $a_n = \frac{n!}{n^n} x^n$ and use ratio test for the absolute values. $\frac{|a_{n+1}|}{|a_n|} = \frac{|x|}{(1+1/n)^n} \to |x|/e$ as $n \to \infty$.

For absolute convergence we must have |x| < e. So the radius of convergence is e.

When $x = \pm e$, we have $\frac{|a_{n+1}|}{|a_n|} = \frac{e}{(1+1/n)^n} > 1$, using the hint. Hence $a_n > a_1$ for all n and the general term a_n does not converge to zero as n goes to infinity, and the series diverges at the end points.

STUDENT NO:

Q-5) Find the values of c and d (5 points each) such that the following limit exists and is finite. For those values of c and d find the limit. (10 points)

$$\lim_{x \to 0} \left(\frac{\cos(x^2)}{x^8} + \frac{c\,\sin x}{x^2} + \frac{d+cx^4}{x^8} - \frac{1}{2x} + \frac{d}{c} \right)$$

Solution:

The expression in the limit has the Taylor expansion

$$\left(\left(1+d\right)x^{-8} + \left(-\frac{1}{2}+c\right)x^{-4} + \left(-\frac{1}{2}+c\right)x^{-1} + \frac{d}{c} + \frac{1}{24} - \frac{1}{6}cx + \frac{1}{120}cx^{3} + \cdots\right)$$

For the limit to exist and be finite we need to have d = -1 and c = 1/2. And in that case the limit is $-\frac{47}{24}$.