\qquad
\qquad

Math 102 Calculus II - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	15	25	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail, if that is necessary. A correct answer without proper reasoning may not get any credit, except in the fill-in-the-blanks type problems.

Q-1) Find the minimum and maximum values of the function

$$
f(x, y)=x^{2}+y^{2}-2 x+2 y+5
$$

on the closed disk

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 4\right\}
$$

Solution: We first find the critical values of the function.
$f_{x}=2 x-2=0$ gives $x=1$.
$f_{y}=2 y+2=0$ gives $y=-1$.
This critical point $(1,-1)$ is in the domain D, so we calculate f there; $f(1,-1)=3$.
Next we restrict f to the boundary of D which is parameterized as $x=2 \cos t, y=2 \sin t$, $t \in[0,2 \pi]$. We then have

$$
\phi(t)=f(2 \cos t, 2 \sin t)=4 \sin t-4 \cos t+9, t \in[0,2 \pi] .
$$

We find its critical points;
$\phi^{\prime}(t)=4 \sin t+4 \cos t=0, \tan t=-1, t=3 \pi / 4$ or $7 \pi / 4$ both in $[0,2 \pi]$.
These give the values:

$g(3 \pi / 4)=f(-\sqrt{2}, \sqrt{2})=9+4 \sqrt{2} \approx 15$.
$g(7 \pi / 4)=f(\sqrt{2},-\sqrt{2})=9-4 \sqrt{2} \approx 3.3$.

Checking the values in the boxes we find that the maximum value of f is $9+4 \sqrt{2}$ and the minimum value is 3 .

Q-2 Evaluate the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{1}{1+x^{3}} d x d y$.

Solution:

$$
\begin{aligned}
\int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{1}{1+x^{3}} d x d y & =\int_{0}^{2} \int_{0}^{x^{2}} \frac{1}{1+x^{3}} d y d x \\
& =\int_{0}^{2}\left(\left.\frac{y}{1+x^{3}}\right|_{0} ^{x^{2}}\right) d x \\
& =\int_{0}^{2} \frac{x^{2}}{1+x^{3}} d x \\
& =\left(\left.\frac{1}{3} \ln \left(1+x^{3}\right)\right|_{0} ^{2}\right) \\
& =\frac{1}{3} \ln 9 \\
& =\frac{2}{3} \ln 3
\end{aligned}
$$

Q-3) Change the order of integration of the following integral as indicated and also find the value of the integral by evaluating any of the integrals you find.
(Grading: each box=1 point, evaluation $=7$ points.)

Solution:

The last integral is easier to evaluate and we find $\frac{1}{6}+\frac{4}{3}=\frac{3}{2}$.

Q-4) Let R be the region in the plane bounded by $y=x^{2}, y=x+2$, and $x=0$.
Let C be the boundary of R taken counterclockwise.

Let $F=\left(e^{x}+y^{2}-\tan x+1, \ln \left(y^{3}+1\right)+2 x y+x^{3}-7\right)$.

Calculate the work done by F along C, i.e. calculate $\int_{C} F \cdot T d s$.
Solution: Let $F=(M, N)$.

$$
\begin{aligned}
\int_{C} F \cdot T d s & =\int_{C} M d x+N d y \\
& =\iint_{R}\left(N_{x}-M_{y}\right) d A \quad \text { (Green's Theorem) } \\
& =3 \iint^{2} x^{2} d A \\
& =3 \int_{0}^{2} \int_{x^{2}}^{x+2} x^{2} d y d x \\
& =\frac{44}{5}
\end{aligned}
$$

Q-5) Find the area of the region which lies in the plane $2 x+4 y-z=0$ and is bounded by the curve of intersection of this plane by the paraboloid $x^{2}+y^{2}-z=9$.

Solution:

We want to calculate $d \sigma$ for the surface $F(x, y, z)=2 x+4 y-z=0$.

The projection of the region on the $x y$-plane is given by $2 x+4 y=x^{2}+y^{2}-9$, which gives

$$
(x-1)^{2}+(y-2)^{2}=14 .
$$

Call this projection R.
$\nabla F=(2,4,-1)$.
$|\nabla F|=\sqrt{4+16+1}=\sqrt{21}$.
$|\nabla F \cdot k|=1$
Hence $d \sigma=\frac{|\nabla F|}{|\nabla F \cdot k|} d A=\sqrt{21} d A$.
Finally

$$
\begin{aligned}
\text { Area } & =\iint_{R} d \sigma \\
& =\sqrt{21} \iint_{R} d A \\
& =\sqrt{21} \cdot(\text { Area of } R) \\
& =\sqrt{21} 14 \pi .
\end{aligned}
$$

