\qquad

Math 102 Calculus II - Homework I - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{5}+y^{6}}{\left(x^{2}+y^{2}\right)^{\alpha}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Find all value of $\alpha \in \mathbb{R}$ such that both $f_{x}(0,0)$ and $f_{y}(0,0)$ exist. Calculate $f_{x}(0,0)$ and $f_{y}(0,0)$ for all such values of α.

Solution:

$$
f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} x^{4-2 \alpha}= \begin{cases}1 & \text { if } \alpha=2 \\ 0 & \text { if } \alpha<2 \\ \text { No Limit } & \text { if } \alpha>2\end{cases}
$$

Similarly,

$$
f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=\lim _{y \rightarrow 0} y^{5-2 \alpha}= \begin{cases}1 & \text { if } \alpha=5 / 2 \\ 0 & \text { if } \alpha<5 / 2 \\ \text { No Limit } & \text { if } \alpha>5 / 2\end{cases}
$$

Both limits exist if and only if $\alpha \leq 2$.
If $\alpha=2$, then $f_{x}(0,0)=1, f_{y}(0,0)=0$.
If $\alpha<2$, then $f_{x}(0,0)=0, f_{y}(0,0)=0$.

Q-2) Assume that $3 z+x+y^{2}+x z^{3}=13$ defines z as a C^{2} function of x and y around the point $(x, y, z)=(3,2,1)$. Find the values of $z_{x}, z_{y}, z_{x y}, z_{y x}, z_{x x}$ and $z_{y y}$ at the point $(x, y, z)=(3,2,1)$.

Solution:

Differentiate both sides of $3 z+x+y^{2}+x z^{3}=13$ implicitly with respect to x, taking y as the other independent variable and z as a differentiable function of x and y, to get

$$
\begin{equation*}
3 z_{x}+1+z^{3}+3 x z^{2} z_{x}=0, \tag{1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
z_{x}=-\frac{1+z^{3}}{3\left(1+x z^{2}\right)} . \tag{2}
\end{equation*}
$$

Putting $(x, y, z)=(3,2,1)$ into the equation (1) or (2), we get

$$
z_{x}=-\frac{1}{6}
$$

Similarly we get

$$
\begin{equation*}
z_{y}=-\frac{2 y}{3\left(1+x z^{2}\right)}, \tag{3}
\end{equation*}
$$

and

$$
z_{y}=-\frac{1}{3}
$$

Now using any of the equations (1),(2) or (3), differentiating implicitly and putting $\left(x, y, z, z_{x}, z_{y}\right)=(3,2,1,-1 / 6,-1 / 3)$, we get

$$
z_{x x}=\frac{1}{24}, \quad z_{y y}=-\frac{1}{3}, \quad z_{x y}=z_{y x}=0 .
$$

Q-3) Let S be the surface in \mathbb{R}^{3} given by $f(x, y, z)=0$ where $f(x, y, z)=1+x^{2}+y^{4}-z$. Let $p_{0}=\left(1 / 2, y_{0}, z_{0}\right)$ be a point on the surface such that the tangent plane to the surface S at p_{0} passes through the origin. Find z_{0}.

Solution:

$$
\begin{gathered}
\nabla f(x, y, z)=\left(2 x, 4 y^{3},-1\right) . \\
\nabla f\left(p_{0}\right)=\left(1,4 y_{0}^{3},-1\right) .
\end{gathered}
$$

Equation of the tangent plane to S at p_{0} is

$$
\left(1,4 y_{0}^{3},-1\right) \cdot\left(x-\frac{1}{2}, y-y_{0}, z-z_{0}\right)=0
$$

This passes through the origin so $(x, y, z)=(0,0,0)$ satisfies this equation giving

$$
\begin{equation*}
-\frac{1}{2}-4 y_{0}^{4}+z_{0}=0 \tag{4}
\end{equation*}
$$

Since $\left.p_{o}=\left(1 / 2, y_{0}, z\right)=_{0}\right)$ is on the surface, we also have

$$
\begin{equation*}
\frac{5}{4}+y_{0}^{4}-z_{0}=0 \tag{5}
\end{equation*}
$$

Adding equations (4) and (5) we get

$$
y_{0}^{4}=\frac{1}{4} .
$$

Putting this value into equation (4) or (5) we get

$$
z_{0}=\frac{3}{2}
$$

Q-4) Let $F(x)=\int_{x^{4}}^{x^{3}} \sqrt{t^{3}+x^{2}} d t$. Calculate $F^{\prime}(x)$ and find explicitly the values of $F^{\prime}(0)$ and $F^{\prime}(1)$.

Hint: Assume that you can differentiate under the integral sign; see the last few problems at the end of the section on "The Chain Rule" of Thomas' Calculus.

Solution:

Let $G(u, v, w)=\int_{u}^{v} \sqrt{t^{3}+w} d t$ where u, v and w are functions of x.
Then

$$
\begin{equation*}
\frac{d}{d x} G(u, v, w)=G_{u}(u, v, w) u^{\prime}+G_{v}(u, v, w) v^{\prime}+G_{w}(u, v, w) w^{\prime} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{u}=-\sqrt{u^{3}+w}, \quad G_{v}=\sqrt{v^{3}+w}, \quad G_{w}=\int_{u}^{v} \frac{1}{2 \sqrt{t^{3}+w}} d t \tag{7}
\end{equation*}
$$

Put $u=x^{4}, v=x^{3}$ and $w=x^{2}$ into the equations (6) and (7) to get

$$
F(x)=G\left(x^{4}, x^{3}, x^{2}\right),
$$

and

$$
F^{\prime}(x)=-4 x^{3} \sqrt{x^{12}+x^{2}}+3 x^{2} \sqrt{x^{9}+x^{2}}+\int_{x^{4}}^{x^{3}} \frac{x}{\sqrt{t^{3}+x^{2}}} d t .
$$

From this we immediately find

$$
F^{\prime}(0)=0 \text { and } F^{\prime}(1)=-\sqrt{2} .
$$

