\qquad

Math 102 Calculus II - Homework II - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) For any $h \geq 0$ consider the region R_{h} in \mathbb{R}^{3} bounded by the surfaces $z=(y+1) x^{2}$, $y=0, y=1$ and $z=h$. Find the volume of R_{h}.

Solution:

$$
\begin{aligned}
\text { Volume } & =2 \int_{0}^{1} \int_{0}^{\sqrt{h /(y+1)}} \int_{(y+1) x^{2}}^{h} d z d x d y \\
& =2 \int_{0}^{1} \int_{0}^{\sqrt{h /(y+1)}} h-(y+1) x^{2} d x d y \\
& =\frac{4 h^{3 / 2}}{3} \int_{0}^{1} \frac{d y}{\sqrt{y+1}} \\
& =\frac{8 h^{3 / 2}}{3}(\sqrt{2}-1) \\
& \approx(1.104) h \sqrt{h}
\end{aligned}
$$

Q-2) Let R be the region in \mathbb{R}^{3} in the first octant bounded by the coordinate planes and the unit sphere. Evaluate the integral of the function $e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ on R.

Solution:

The problem requires that we pass to spherical coordinates.

$$
\begin{aligned}
\iiint_{R} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} e^{\rho^{3}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(\left.\frac{1}{3} \sin \phi e^{\rho^{3}}\right|_{\rho=0} ^{\rho=1}\right) d \phi d \theta \\
& =\frac{e-1}{3} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin \phi d \phi d \theta \\
& =\frac{e-1}{3} \int_{0}^{\pi / 2}\left(-\left.\cos \phi\right|_{0} ^{\pi / 2}\right) d \theta \\
& =\frac{e-1}{3} \int_{0}^{\pi / 2} d \theta \\
& =\frac{(e-1) \pi}{6} \\
& \approx 0.899
\end{aligned}
$$

Q-3) Consider the vector field $\vec{F}=\left(\frac{1}{x+y^{2}+z^{3}}, \frac{2 y}{x+y^{2}+z^{3}}+1, \frac{3 z^{2}}{x+y^{2}+z^{3}}+2 z\right)$.
Calculate the work done by \vec{F} along the path $C=C_{1}+C_{2}+C_{3}$.
C_{1} is along the semicircle in the $y z$-plane with center at the origin and radius 2. C_{1} follows this semicircle from $(0,-2,0)$ towards $(0,2,0)$ with $z \geq 0$.
C_{2} goes from $(0,2,0)$ towards the point $(2,1,0)$ along the ellipse $\frac{3 x^{2}}{16}+\frac{y^{2}}{4}=1$ in the $x y$-plane.
C_{3} goes from the point $(2,1,0)$ towards the point $(2,1,1)$ along a straight line.

Solution:

For the problem to be reasonable, \vec{F} must be conservative! In fact we find that

$$
\vec{F}=\nabla f, \text { where } f=\ln \left(x+y^{2}+z^{3}\right)+y+z^{2},
$$

and
Work along $C=\int_{C} \vec{F} \cdot d r=f(2,1,1)-f(0,-2,0)=(\ln 4+2)-(\ln 4-2)=4$.

Q-4) Consider the curve of intersection of the surfaces $z=y$ and $z=x^{2}+y^{2}$, and let C be the path on this curve from the origin to the point $(0,1,1)$ lying in the first octant. Calculate the work done by the vector $\vec{F}=\left(x, x^{2}, y+z\right)$ on the path C.

Solution:

A parametrization of the path C is $\vec{r}(t)=(\sqrt{t(1-t)}, t, t), 0 \leq t \leq 1$.

$$
\text { Work along } \begin{aligned}
C & =\int_{C} \vec{F} \cdot d \vec{r} \\
& =\int_{0}^{1} \vec{F}(\vec{r}(t)) \cdot d \vec{r}(t) \\
& =\int_{0}^{1}\left(\sqrt{t-t^{2}}, t-t^{2}, 2 t\right) \cdot\left(\frac{1-2 t}{2 \sqrt{t-t^{2}}}, 1,1\right) d t \\
& =\int_{0}^{1}\left(\frac{1}{2}+2 t-t^{2}\right) d t \\
& =\frac{7}{6} .
\end{aligned}
$$

