\qquad

Math 102 Calculus II - Midterm Exam I - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Use at your own risk!

$$
\begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
\tan (x) & =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\cdots \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\sec (x) & =1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\frac{61 x^{6}}{720}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\tan ^{-1}(x) & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

Q-1) Show that $\lim _{n \rightarrow \infty} a_{n}=0$, where $a_{n}=\frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{4 \cdot 9 \cdot 14 \cdots(5 n-1)}$.

Solution:

We have two solutions to this problem. First the straightforward solution.
Observe that $\frac{2 n+1}{5 n-1} \leq \frac{1}{2}$ for all $n \geq 3$. This gives

$$
0<a_{n}=\left(\frac{3 \cdot 5}{4 \cdot 9}\right)\left(\frac{7 \cdots(2 n+1)}{14 \cdots(5 n-1)}\right) \leq\left(\frac{5}{12}\right)\left(\frac{1}{2}\right)^{n-2}
$$

By the Sandwich theorem, we have $\lim _{n \rightarrow \infty} a_{n}=0$.
The other solution requires a little imagination. First observe that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2 n+3}{5 n+4}=\frac{2}{5}<1
$$

so $\sum_{n=1}^{\infty} a_{n}$ converges, forcing $\lim _{n \rightarrow \infty} a_{n}=0$.

Q-2-a) Check the following series for converge:

$$
\sum_{n=1}^{\infty} \frac{\ln n}{\left(19 n^{2}+6 n+2008\right)}
$$

Solution:

Limit compare with $\sum \frac{\ln n}{n^{2}}$ which converges by the integral test, to conclude that the given series converges.

Use integration by parts to integrate $\frac{\ln x}{x^{2}}$ as follows: Set $u=\ln x$ and then

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=-\left(\left.\frac{\ln x}{x}\right|_{1} ^{\infty}\right)+\int_{1}^{\infty} \frac{d x}{x^{2}}=-\left(\left.\frac{1}{x}\right|_{1} ^{\infty}\right)=1
$$

Q-2-b) Check the following two series for convergence: $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ and $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

Solution:

For the first series

$$
\frac{a_{n+1}}{a_{n}}=\frac{n^{n}}{(n+1)^{n}}=\frac{1}{(1+1 / n)^{n}} \rightarrow \frac{1}{e}<1 \quad \text { as } n \rightarrow \infty .
$$

Therefore the first series converges by the ratio test. Hence the general term goes to zero as n goes to infinity. The general term of the second series is the reciprocal of the general term of the first series and hence goes to infinity as n goes to infinity. Then the second series diverges by the divergence test.

Q-3) Find the sum

$$
\sum_{n=2}^{\infty} \frac{6}{(n-1)(n)(n+2)}
$$

Solution:

$$
\frac{6}{(n-1)(n)(n+2)}=\frac{-3}{n}+\frac{2}{n-1}+\frac{1}{n+2} .
$$

Adding these from $n=2$ to $n=k$ we find

$$
s_{k}=\sum_{n=2}^{k} \frac{6}{(n-1)(n)(n+2)}=\frac{7}{6}-\frac{4+3 k}{k(k+1)(k+2)} .
$$

Hence the sum is $\lim _{k \rightarrow \infty} s_{k}=\frac{7}{6}$.

Q-4) Let r be the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{7 n^{2}+1}{3 n^{3}+n+81} x^{n}$.
a) Find r. (10 points)
b) Check the convergence of the series for $x=r$ and for $x=-r$. ($5+5$ points)

Solution:

Let $a_{n}(x)=\frac{7 n^{2}+1}{3 n^{3}+n+81} x^{n}$ and use ratio test for the absolute values. $\frac{\left|a_{n+1}(x)\right|}{\left|a_{n}(x)\right|} \rightarrow|x|$ as $n \rightarrow \infty$.

For absolute convergence we must have $|x|<1$. So the radius of convergence is 1 .
When $x=1$, we have $\frac{\left|a_{n}(x)\right|}{1 / n} \rightarrow 7 / 3$ as $n \rightarrow \infty$. Hence the series diverges at $x=1$ by limit comparing with the Harmonic series.

When $x=-1$, we have an alternating series. The general term goes to zero and its absolute value decreases (see its first derivative below). Then the series converges at $x=-1$ by the alternating series test.

To see that the general term decreases to zero, let $f(t)=\frac{7 t^{2}+1}{3 t^{3}+t+81}$. Then $f^{\prime}(t)=$ $\frac{-21 t^{4}-2 t^{2}+1134 t-1}{\left(3 t^{3}+t+81\right)^{2}}$ which is negative for all large t (in fact for all $t \geq 4$.)

Q-5) Find

$$
\lim _{x \rightarrow 0} \frac{6(\tan x)(\sec x)-6 x-5 x^{3}}{\left(e^{x}-1-x\right)(\sin x-x)}
$$

Solution:

Using the Taylor expansions of the functions involved in the limit, we have

$$
\frac{6(\tan x)(\sec x)-6 x-5 x^{3}}{\left(e^{x}-1-x\right)(\sin x-x)}=\frac{\frac{61}{20} x^{5}+\frac{277}{168} x^{7}+\cdots}{-\frac{1}{12} x^{5}-\frac{1}{36} x^{6}+\cdots} \rightarrow-\frac{183}{5} \text { as } n \rightarrow \infty
$$

