NAME:

STUDENT NO:

Math 102 Calculus II – Midterm Exam I – Solutions

Γ	1	2	3	4	5	TOTAL
┢	20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Use at your own risk!

$\ln(1+x)$	=	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$
$\tan(x)$	=	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots$
e^x	=	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$
$\sin(x)$	=	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$
$\sec(x)$	=	$1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \cdots$
$\cos(x)$	=	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$
$\tan^{-1}(x)$	=	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$

NAME:

STUDENT NO:

Q-1) Show that
$$\lim_{n \to \infty} a_n = 0$$
, where $a_n = \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{4 \cdot 9 \cdot 14 \cdots (5n-1)}$.

Solution:

We have two solutions to this problem. First the straightforward solution.

Observe that $\frac{2n+1}{5n-1} \leq \frac{1}{2}$ for all $n \geq 3$. This gives

$$0 < a_n = \left(\frac{3 \cdot 5}{4 \cdot 9}\right) \left(\frac{7 \cdots (2n+1)}{14 \cdots (5n-1)}\right) \le \left(\frac{5}{12}\right) \left(\frac{1}{2}\right)^{n-2}.$$

By the Sandwich theorem, we have $\lim_{n \to \infty} a_n = 0$.

The other solution requires a little imagination. First observe that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2n+3}{5n+4} = \frac{2}{5} < 1,$$

so $\sum_{n=1}^{\infty} a_n$ converges, forcing $\lim_{n \to \infty} a_n = 0$.

Q-2-a) Check the following series for converge:

$$\sum_{n=1}^{\infty} \frac{\ln n}{(19n^2 + 6n + 2008)}$$

Solution:

Limit compare with $\sum \frac{\ln n}{n^2}$ which converges by the integral test, to conclude that the given series converges.

Use integration by parts to integrate $\frac{\ln x}{x^2}$ as follows: Set $u = \ln x$ and then

$$\int_{1}^{\infty} \frac{\ln x}{x^2} \, dx = -\left(\frac{\ln x}{x}\Big|_{1}^{\infty}\right) + \int_{1}^{\infty} \frac{dx}{x^2} = -\left(\frac{1}{x}\Big|_{1}^{\infty}\right) = 1.$$

Q-2-b) Check the following two series for convergence: $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ and $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

Solution:

For the first series

$$\frac{a_{n+1}}{a_n} = \frac{n^n}{(n+1)^n} = \frac{1}{(1+1/n)^n} \to \frac{1}{e} < 1 \quad \text{as} \quad n \to \infty.$$

Therefore the first series converges by the ratio test. Hence the general term goes to zero as n goes to infinity. The general term of the second series is the reciprocal of the general term of the first series and hence goes to infinity as n goes to infinity. Then the second series diverges by the divergence test.

NAME:

STUDENT NO:

Q-3) Find the sum

$$\sum_{n=2}^{\infty} \frac{6}{(n-1)(n)(n+2)}$$

Solution:

$$\frac{6}{(n-1)(n)(n+2)} = \frac{-3}{n} + \frac{2}{n-1} + \frac{1}{n+2}.$$

Adding these from n = 2 to n = k we find

$$s_k = \sum_{n=2}^k \frac{6}{(n-1)(n)(n+2)} = \frac{7}{6} - \frac{4+3k}{k(k+1)(k+2)}.$$

Hence the sum is $\lim_{k \to \infty} s_k = \frac{7}{6}$.

STUDENT NO:

Q-4) Let r be the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{7n^2 + 1}{3n^3 + n + 81} x^n.$

a) Find r. (10 points)

b) Check the convergence of the series for x = r and for x = -r. (5+5 points)

Solution:

Let $a_n(x) = \frac{7n^2 + 1}{3n^3 + n + 81} x^n$ and use ratio test for the absolute values. $\frac{|a_{n+1}(x)|}{|a_n(x)|} \to |x|$ as $n \to \infty$.

For absolute convergence we must have |x| < 1. So the radius of convergence is 1.

When x = 1, we have $\frac{|a_n(x)|}{1/n} \to 7/3$ as $n \to \infty$. Hence the series diverges at x = 1 by limit comparing with the Harmonic series.

When x = -1, we have an alternating series. The general term goes to zero and its absolute value decreases (see its first derivative below). Then the series converges at x = -1 by the alternating series test.

To see that the general term decreases to zero, let $f(t) = \frac{7t^2 + 1}{3t^3 + t + 81}$. Then $f'(t) = \frac{-21t^4 - 2t^2 + 1134t - 1}{(3t^3 + t + 81)^2}$ which is negative for all large t (in fact for all $t \ge 4$.)

NAME:

STUDENT NO:

Q-5) Find

$$\lim_{x \to 0} \frac{6(\tan x)(\sec x) - 6x - 5x^3}{(e^x - 1 - x)(\sin x - x)}.$$

Solution:

Using the Taylor expansions of the functions involved in the limit, we have

$$\frac{6(\tan x)(\sec x) - 6x - 5x^3}{(e^x - 1 - x)(\sin x - x)} = \frac{\frac{61}{20}x^5 + \frac{277}{168}x^7 + \dots}{-\frac{1}{12}x^5 - \frac{1}{36}x^6 + \dots} \to -\frac{183}{5} \text{ as } n \to \infty.$$