Quiz \# 1
Math 102-011 Calculus
February 13, 2015 Friday
Bilkent University
\square

NAME:

Q-1)

(i) Show that $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 4}}=0$. [30 points]
(ii) Show that $\ln n<n^{1 / 4}$ for all large n. [30 points]
(iii) Does the series $\sum_{n=2}^{\infty}\left(\frac{\ln n}{n}\right)^{2}$ converge or diverge? [40 points]

Show your work in detail. Only correct solutions will be graded; correct answers without justification are never graded.

Answer:

Let $f(x)=\frac{\ln x}{x^{1 / 4}}$. Then using L'Hopital's rule we have

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{4}{x^{1 / 4}}=0
$$

This means that for all large n we have $\frac{\ln n}{n^{1 / 4}}<1$, which answers the second part. Using this we have for all large n,

$$
\left(\frac{\ln n}{n}\right)^{2}<\left(\frac{n^{1 / 4}}{n}\right)^{2}<\frac{n^{1 / 2}}{n^{2}}=\frac{1}{n^{3 / 2}}
$$

The series $\sum_{n=2}^{\infty} \frac{1}{n^{p}}$ converges for $p=3 / 2>1$ by p-test and dominates our series for large n, so our series converges by comparison test.

