Quiz \# 2
Math 102-011 Calculus
February 20, 2015 Friday
Bilkent University
\square

Instructor: Ali Sinan Sertöz
NAME:

Q-1)

(i) Apply the Alternating Series Test to the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{3^{n}}$. What do you conclude? [50 points]
(ii) Apply the Ratio Test to the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2015}}{2015^{n}}$. What do you conclude? [50 points]

Show your work in detail. Correct answers without justification are never graded.

Answer:

(i) Let $a_{n}=\frac{n}{3^{n}}$. First we have

$$
\lim _{n \rightarrow \infty} \frac{n}{3^{n}}=\lim _{x \rightarrow \infty} \frac{x}{3^{x}} \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{1}{3^{x} \ln 3}=0
$$

Next we show that a_{n} is decreasing. For all $n \geq 1$ we have

$$
a_{n+1}=\frac{n+1}{3^{n+1}}=\frac{n}{3^{n}} \frac{n+1}{3 n}=\frac{n}{3^{n}} \frac{n+1}{n+n+n}<\frac{n}{3^{n}}=a_{n} .
$$

Hence by the Alternating Series Test this series converges.
(ii) Let $a_{n}=(-1)^{n} \frac{n^{2015}}{2015^{n}}$. Apply the ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{x \rightarrow \infty} \frac{(n+1)^{2015}}{2015^{n+1}} \frac{2015^{n}}{n^{2015}}=\lim _{x \rightarrow \infty} \frac{1}{2015}\left(1+\frac{1}{n}\right)^{2015}=\frac{1}{2015}<1 .
$$

So the series converges absolutely.

