Quiz \# 3
Math 102-011 Calculus
February 27, 2015 Friday \square

NAME:

Q-1) In each of the following, find the radius of convergence of the series (30 points), and check for convergence at the end points (10 points each). Show your work in detail.
(i) $\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{\ln n}$.
(ii) $\sum_{n=1}^{\infty} 2015^{n} n^{2015}(x-2015)^{n}$.

Answer:

(i) Let $a_{n}=(-1)^{n} \frac{x^{n}}{\ln n}$. Using the ratio test gives

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=|x|^{-}
$$

For the radius of convergence, this must be less than one, so

$$
|x|<1 \text { for convergence. }
$$

Hence here the radius of convergence is 1 . When $x=1$, the series converges by the alternating series test. When $x=-1$, the series diverges by comparison with the harmonic series.
(ii) Let $a_{n}=2015^{n} n^{2015}(x-2015)^{n}$. As above we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=2015|x-2015| .
$$

For convergence this must be less than one. So we have

$$
|x-2015|<\frac{1}{2015} \text { for convergence. }
$$

Hence the radius of convergence is $1 / 2015$. At the end points we have $|x-2015|=1 / 2015$, so $a_{n}= \pm n^{2015}$ which does not go to zero as n goes to infinity. The series then diverges at both end points by divergence test.

