Quiz \# 4
Math 102-011 Calculus
March 13, 2015 Friday
Bilkent University

Instructor: Ali Sinan Sertöz
NAME:

Q-1) Let $L$ be the line given by the parametrization

$$
L(t)=(1+2 t, 3+4 t, 5+6 t), \text { where } t \in \mathbb{R}
$$

a) Write an equation for the plane which contains the points

$$
p_{1}=(1,2,3) \text { and } p_{2}=(3,2,1),
$$

and is parallel to the line $L$.
b) Does the line $L$ intersect the plane?
: Grading is $70+30$ points.

## Answer:

We find two vectors parallel to the plane. One is $p_{2}-p_{1}$ and the other is the direction vector of the line $L$. Thus let

$$
\vec{v}_{1}=p_{2}-p_{1}=(2,0,-2) \quad \text { and } \quad \vec{v}_{2}=(2,4,6):
$$

A normal vector to the plane will be in the direction of $\vec{v}_{1} \times \vec{v}_{2}$. We have

$$
\vec{v}_{1} \times \vec{v}_{2}=\left|\begin{array}{ccc}
i & j & k \\
2 & 0 & -2 \\
2 & 4 & 6
\end{array}\right|=(8,-16,8)
$$

Take $\vec{n}=(1,-2,1)$. Then an equation of the plane passing through $p_{1}$ and parallel to the line $L$ is $\vec{n} \cdot\left(p-p_{1}\right)=0$ where $p=(x, y, z)$. We can write this equation as

$$
x-2 y+z=0 .
$$

This answers part a. For the b part check that

$$
(1+2 t)-2(3+4 t)+(5+6 t)=0 \quad \text { for all } t \in \mathbb{R}
$$

hence the line $L$ totally lies in the plane.

