Quiz \# 5

Math 102-011 Calculus
27 March 2015, Friday
Bilkent University
Department of Mathematics
Instructor: Ali Sinan Sertöz

YOUR NAME:

Q-1) Calculate the following limits. Show your work in detail. Correct answer without proper justification does not get any partial credits!
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y+x y^{3}}{x^{4}+6 x^{2} y^{2}+y^{4}}$.
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{3} y+x y^{3}\right) \ln \left(1+x^{2}+y^{4}\right)}{x^{4}+6 x^{2} y^{2}+y^{4}}$.
: Grading is $50+50$ points.

Answer:

a) Use the different path test. Let $y=\lambda x$. Then we have

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=\lambda x}} \frac{x^{3} y+x y^{3}}{x^{4}+6 x^{2} y^{2}+y^{4}}=\lim _{x \rightarrow 0} \frac{\lambda+\lambda^{4}}{1+6 \lambda^{2}+\lambda^{4}}=\frac{\lambda+\lambda^{4}}{1+6 \lambda^{2}+\lambda^{4}}
$$

and the limit depends on path. So the limit does not exist.
b) First note that

$$
(x-y)^{4} \geq 0, \quad \text { which gives } \frac{x^{3} y+x y^{3}}{x^{4}+6 x^{2} y^{2}+y^{4}} \leq \frac{1}{4}
$$

Set

$$
f(x, y)=\frac{x^{3} y+x y^{3}}{x^{4}+6 x^{2} y^{2}+y^{4}}=\frac{x y\left(x^{2}+y^{2}\right)}{x^{4}+6 x^{2} y^{2}+y^{4}}
$$

We see that

$$
0 \leq|f(x, y)|=f(|x|,|y|) \leq \frac{1}{4}
$$

From this we get

$$
0 \leq\left|\frac{\left(x^{3} y+x y^{3}\right) \ln \left(1+x^{2}+y^{4}\right)}{x^{4}+6 x^{2} y^{2}+y^{4}}\right| \leq \frac{1}{4} \ln \left(1+x^{2}+y^{4}\right)
$$

Since we have

$$
\lim _{(x, y) \rightarrow(0,0)} \ln \left(1+x^{2}+y^{4}\right)=\ln 1=0
$$

we get by the sandwich theorem that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{3} y+x y^{3}\right) \ln \left(1+x^{2}+y^{4}\right)}{x^{4}+6 x^{2} y^{2}+y^{4}}=0 .
$$

