Quiz \# 1
Math 102-Section 06 Calculus II
16 February 2017, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University

Your Name:

\qquad

Student ID: \qquad Your Department: ...
Show your work in detail. Correct answers without justification are never graded.

Q-1) Write parametric equations for the line of intersection of the two planes

$$
x+2 y+3 z=4 \text { and } 5 x+6 y+7 z=8
$$

(5 points)
Also write an equation for the plane which is perpendicular to the above line and passes through the point $p=(-1,1,1)$.
(5 points)
Answer: Call this line L. Since L lies in each of the above planes it is perpendicular to the normals of these planes. Hence L points along

$$
\vec{n}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \times(5 \mathbf{i}+6 \mathbf{j}+7 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
5 & 6 & 7
\end{array}\right|=-4(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) .
$$

Check that the above given point $p=(-1,1,1)$ lies on both surfaces so lies on L. The line L can be described as a vector in the form

$$
L(t)=p+t \vec{n},
$$

where $\vec{n}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
Now we can write parametric equations for L as follows:

$$
\begin{aligned}
& x=-1+t \\
& y=1-2 t \\
& z=1+t
\end{aligned}
$$

where $t \in \mathbb{R}$. An equation of the plane perpendicular to this line and passing through $p=(-1,1,1)$ is

$$
\vec{n} \cdot(x, y, z)=\vec{n} \cdot p
$$

Simplifying we get

$$
x-2 y+z=-2
$$

