Quiz \# 3
Math 102-Section 06 Calculus II
2 March 2017, Thursday Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Your Name:

\qquad

Student ID:
Your Department:
Show your work in detail. Correct answers without justification are never graded.

Q-1) Let $F(x, y, z)=x^{2}+y^{3} z+5 z^{21}-14$. Assume that x and y are functions of t and s, given as follows.

$$
\begin{aligned}
& x(t, s)=1+2 t+3 s+3 t^{3}+4 t^{4} s^{2}+72 s^{5} t^{7} \\
& y(t, s)=2+4 t+12 s+6 t^{3}+5 t^{4} s^{4}+48 s^{2} t^{6}+111 s^{2} t^{8}
\end{aligned}
$$

$F(x, y, z)=0$ defines z as a differentiable function of x and y, and hence as a differentiable function of t and s.

Find $z_{t}(0,0)$ at the point $(x, y, z)=(1,2,1)$.
(10 points)
Answer: Implicitly taking the partial derivative with respect to t of both sides of $F(x, y, z)=0$, we get

$$
2 x x_{t}+3 y^{2} y_{t} z+y^{3} z_{t}+105 z^{20} z_{t}=0 .
$$

Note that $x_{t}(0,0)=2$ and $y_{t}(0,0)=4$, and $(x, y, z)=(1,2,1)$. Putting these in we find

$$
z_{t}(0,0)=-\frac{52}{113} .
$$

Another way of solving this is as follows. First you forget about t and s. Differentiating both sides of $F=0$ with respect to x and y separately and treating z as a function of x and y we get

$$
\begin{aligned}
2 x+y^{3} z_{x}+105 z^{20} z_{x} & =0 \\
3 y^{2} z+y^{3} z_{y}+105 z^{20} z_{y} & =0
\end{aligned}
$$

From here we obtain at the point $(x, y, z)=(1,2,1)$

$$
z_{x}=-\frac{2}{113}, \quad \text { and } \quad z_{y}=-\frac{12}{113}
$$

Now we use chain rule for z to write

$$
z_{t}=z_{x} x_{t}+z_{y} y_{t}
$$

Putting in the values of x_{t} and y_{t} found above, we find as before

$$
z_{t}(0,0)=-\frac{52}{113} .
$$

