Quiz \# 4
Math 102-Section 06 Calculus II
9 March 2017, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Your Name: \qquad

Student ID: \qquad Your Department: ...
Show your work in detail. Correct answers without justification are never graded.

Q-1) Find at what points on the surface

$$
x^{2}+2 y^{2}+3 z^{2}=4
$$

is the tangent plane parallel to the plane

$$
5 x+6 y+3 \sqrt{2} z=2017
$$

Answer: The gradient vector ∇ of the surface is perpendicular to the tangent plane and hence ∇ must point in the same direction as a normal to the given plane. A normal to the plane is $(5,6,3 \sqrt{2})$. Thus we must have

$$
\nabla=(2 x, 4 y, 6 z)=\lambda(5,6,3 \sqrt{2})
$$

for some λ. To determine λ, we first note that

$$
x=\frac{5}{2} \lambda, y=\frac{3}{2} \lambda, z=\frac{1}{\sqrt{2}} \lambda .
$$

Putting these into the equation of the surface and simplifying we get

$$
\lambda= \pm \frac{4}{7}
$$

Thus there are two points on the surface satisfying the required condition. These points are

$$
\pm\left(\frac{10}{7}, \frac{6}{7}, \frac{2 \sqrt{2}}{7}\right)
$$

(To make sure you can check that these points lie on the surface and that the gradient satisfies the required condition, but this is not required in the quiz.)

