Quiz \# 8
Math 102-Section 06 Calculus II
13 April 2017, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Your Name:
Your Department: ..
Show your work in detail. Correct answers without justification are never graded.

Q-1) Define a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ recursively as $a_{1}>6$, and $a_{n+1}=\frac{a_{n}}{2}+\frac{18}{a_{n}}$.
(i) Show that all $a_{n}>6$.
(ii) Assuming (i), show that the sequence is decreasing.
(iii) Assuming (i)-(ii), show that the sequence is convergent.
(iv) Assuming (i)-(ii)-(iii), find the limit of the sequence.

Answer: (i) We will use induction on n. We already know that $a_{1}>6$. Assume that $a_{n}>6$ for some $n \geq 1$. Then $a_{n+1}=\frac{a_{n}}{2}+\frac{18}{a_{n}}>2 \sqrt{\frac{a_{n}}{2} \frac{18}{a_{n}}}=6$, where we used the arthmetic-geometric mean inequality $\frac{x+y}{2} \geq \sqrt{x y}$ where $x, y \geq 0$ and equality holding if and only if when $x=y$. Thus by induction we showed that $a_{n}>6$ for all $n \geq 1$.
(ii) $a_{n}-a_{n+1}=a_{n}-\frac{a_{n}}{2}-\frac{18}{a_{n}}=\frac{a_{n}^{2}-36}{2 a_{n}}>0$ by (ii). Hence the sequence is decreasing.
(iii) The sequence is monotone and bounded, so is convergent.
(iv) Let the limit be L which exists by (iii). Use the equation $a_{n+1}=\frac{a_{n}}{2}+\frac{18}{a_{n}}$, and take the limit of both sides as n goes to infinity. Solve the resulting equation for L to find that $L= \pm 6$. Since all $a_{n}>0$, we must then have $L=6$.

