Quiz \# 10
Math 102-Section 06 Calculus II
27 April 2017, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Your Name: \qquad
Student ID: \qquad Your Department: ...
Show your work in detail. Correct answers without justification are never graded.

Q-1) Consider the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n^{p}}$, where $p>0$ is a constant.
(i) Show that the series converges for all $p>0$. (2 points $^{\text {(}}$
(ii) Show that the series is conditionally convergent for $0<p \leq 1$. (4 points)
(iii) Show that the series is absolutely convergent for $p>1$. 4 poins $)$

Answer: For the following arguments set $a_{n}=\frac{\ln n}{n^{p}}$.
(i) Consider the function $f(x)=\frac{\ln x}{x^{p}}$. Then $f^{\prime}(x)=\frac{1-p \ln x}{x^{p+1}}<0$ for all large x. Also $f(x)$ goes to zero as x goes to infinity by l'Hospital's rule. Hence the series converges by the Alternating Series Test.
(ii) Here we must show that $\sum_{n=2}^{\infty} a_{n}$ diverges when $0<p \leq 1$

We have $a_{n}>\frac{1}{n^{p}}$, and $\sum_{n=2}^{\infty} \frac{1}{n^{p}}$ diverges by the p-test. Hence by the Comparison Test our series diverges.
(iii) Here we must show that $\sum_{n=2}^{\infty} a_{n}$ converges when $p>1$

Let $\epsilon>0$ be such that $p-\epsilon>1$. Then for large n we have $\ln n<n^{\epsilon}$, and hence $a_{n}<\frac{n^{\epsilon}}{n^{p}}=\frac{1}{n^{p-\epsilon}}$.
Since $\sum_{n=2}^{\infty} \frac{1}{n^{p-\epsilon}}$ converges by the p-test, our series converges by the Comparison Test.

