Bilkent University

Quiz \# 01
Math 102-Section 10 Calculus II
14 February 2019, Thursday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Find the unit tangent vector of the parametric curve $\vec{r}(t)=\left(t^{2}-t, t-2, t-2 t^{2}\right), t \in \mathbb{R}$, at the point where it intersects the plane that passes through the points $\vec{a}=(7,8,8), \vec{b}=(11,13,15)$ and $\vec{c}=(8,10,12)$.
Grading: Equation of the plane: 4, intersection point: 3, tangent vector there: 2, unit tangent vector 1 . Total: 10 points.

## Solution:

We first find two vectors along the plane. The easiest ones to find are

$$
\vec{u}_{1}=\vec{b}-\vec{a}=(4,5,7), \text { and } \vec{u}_{2}=\vec{c}-\vec{a}=(1,2,4) .
$$

Next we find a vector orthogonal to these.

$$
\vec{w}=\vec{u}_{1} \times \vec{u}_{2}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 & 5 & 7 \\
1 & 2 & 4
\end{array}\right|=(6,-9,3)
$$

Note that $\vec{w} \cdot \vec{p}$ is constant for all points $\vec{p}=(x, y, z)$ on this plane. This tells us that an equation for this plane is

$$
\begin{equation*}
\vec{w} \cdot \vec{p}=\vec{w} \cdot \vec{a}, \text { or equivalently } 6 x-9 y+3 z=-6 . \tag{4pts}
\end{equation*}
$$

To find the point of intersection of the given curve with this plane, we substitute its parametrization into the above equation of the plane to get

$$
\begin{equation*}
6\left(t^{2}-t\right)-9(t-2)+3\left(t-2 t^{2}\right)=-6, \text { which gives } t=2 . \tag{3pts}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\vec{v}(t)=\vec{r}(t)^{\prime}=(2 t-1,1,1-4 t), \vec{v}(2)=(3,1,-7) \text { and }|\vec{v}(2)|=\sqrt{59} . \tag{2pts}
\end{equation*}
$$

Finally, the unit tangent vector at that point is

$$
\begin{equation*}
\vec{T}(2)=\left(\frac{3}{\sqrt{59}}, \frac{1}{\sqrt{59}},-\frac{7}{\sqrt{59}}\right) . \tag{1~pt}
\end{equation*}
$$

