Quiz \# 02
Math 102-Section 10 Calculus II
21 February 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) In the following you may assume without checking that all partial derivatives of all orders exist and are continuous at those points of interest.
(i) Let $f(x, y, z)=x^{5} \sin ^{2}\left(y^{3} z^{7}\right)$. Calculate f_{x} and f_{y}.
(ii) Let $f(x, y, z)=\arctan \frac{z^{2}+y^{2}}{2 \pi}+x^{2} y^{7}+e^{11 x+2 y+3 z}+2019$. Calculate $\frac{\partial}{\partial x} f_{y y}$.
(iii) Let $f(x, y)=x\left(x^{2}+y^{3}\right)^{-3 / 2} e^{\sin x y}+\left(\frac{x^{3}+x}{x^{2}+y^{4}+1}\right)^{5}\left(\ln \left(y^{4}+x^{2} y^{2}+1\right)\right)^{7}$.

Calculate $f_{x}(1,0)$.

Grading: (i) 2 points, (ii) 4 points, (iii) 4 points.

Solution:

(i) $f_{x}=5 x^{4} \sin ^{2}\left(y^{3} z^{7}\right), \quad f_{y}=6 x^{5} y^{2} z^{7} \sin \left(y^{3} z^{7}\right) \cos \left(y^{3} z^{7}\right)$.
(ii) First note that due to the continuity assumptions given at the beginning we have

$$
\begin{aligned}
\frac{\partial}{\partial x} f_{y y} & =f_{y y x}=f_{x y y}=\frac{\partial}{\partial y} \frac{\partial}{\partial y} f_{x} \\
& =\frac{\partial}{\partial y} \frac{\partial}{\partial y}\left(2 x y^{7}+11 e^{11 x+2 y+3 z}\right) \\
& =\frac{\partial}{\partial y}\left(14 x y^{6}+22 e^{11 x+2 y+3 z}\right) \\
& =84 x y^{5}+44 e^{11 x+2 y+3 z}
\end{aligned}
$$

(iii) Let $g(x)=f(x, 0)=\frac{1}{x^{2}}$. Then

$$
f_{x}(1,0)=g^{\prime}(1)=\left(-\left.\frac{2}{x^{3}}\right|_{x=1}\right)=-2
$$

