Bilkent University

Quiz \# 03
Math 102-Section 10 Calculus II
28 February 2019, Thursday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let $f(x, y, z)=x^{3}+x^{2} y^{2}+y z^{4}+z^{3}$ and let S be the surface in \mathbb{R}^{3} defined by the equation $f(x, y, z)=6$. Let $p_{0}=(1,2,-1)$ be a point on the surface.
(i) Assuming that z is given as a differentiable function of x, y on S around p_{0}, write a linearization of z at p_{0} in the form $z=L_{1}(x, y)$.
(ii) Assuming that y is given as a differentiable function of x, z on S around p_{0}, write a linearization of y at p_{0} in the form $y=L_{2}(x, z)$.
(iii) Using the gradient of f at p_{0}, write an equation for the tangent plane of S at p_{0}.
(iv) Explain how the equation of the tangent line is related to the equations $z=L_{1}(x, y)$ and $y=L_{2}(x, z)$.

Grading: (i) 3 points, (ii) 3 points, (iii) 2 points, (iv) 2 points.

Solution:

(i)

$$
z_{x}\left(p_{0}\right)=-\left.\frac{x\left(3 x+2 y^{2}\right)}{z^{2}(4 y z+3)}\right|_{p_{0}}=\frac{11}{5}, z_{y}\left(p_{0}\right)=-\left.\frac{2 x^{2} y+z^{4}}{z^{2}(4 y z+3)}\right|_{p_{0}}=1,
$$

so the linearization is

$$
z=L_{1}(x, y)=\frac{11}{5}(x-1)+(y-2)-1=\frac{11}{5} x+y-\frac{26}{5} .
$$

(ii)

$$
y_{x}\left(p_{0}\right)=-\left.\frac{x\left(3 x+2 y^{2}\right)}{2 x^{2} y+z^{4}}\right|_{p_{0}}=-\frac{11}{5}, y_{z}\left(p_{0}\right)=-\left.\frac{z^{2}(4 y z+3)}{2 x^{2} y+z^{4}}\right|_{p_{0}}=1
$$

so the linearization is

$$
y=L_{2}(x, z)=-\frac{11}{5}(x-1)+(z+1)+2=-\frac{11}{5} x+z+\frac{26}{5} .
$$

(iii)

$$
\nabla f\left(p_{0}\right)=\left.\left(3 x^{2}+2 x y^{2}, 2 x^{2} y+z^{4}, 4 y z^{3}+3 z^{2}\right)\right|_{p_{0}}=(11,5,-5)
$$

Hence an equation of the tangent plane is

$$
11(x-1)+5(y-2)-5(z+1)=0
$$

or equivalently

$$
11 x+5 y-5 z=26
$$

(iv) If you solve the last equation for z, you get $L_{1}(x, y)$, and if you solve it for y, you get $L_{2}(x, z)$.

