Quiz \# 05
Math 102-Section 10 Calculus II
14 March 2019, Thursday
Bilkent University Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(x, y)=x^{4}+2 y^{2}-x y$.
(i) Find the critical points of f.
(ii) Determine if each critical point is a local minimum, local maximum or a saddle point.
(iii) Does f have a global maximum?
(iv) Does f have a global minimum?

Grading: (i) 5 points, (ii) 3 points, (iii) 1 point, (iv) 1 point.

Solution:

(i)

$$
f_{x}=4 x^{3}-y=0, \quad f_{y}=4 y-x=0
$$

so the critical points are

$$
p_{1}=(0,0), \quad p_{2}(1 / 4,1 / 16), \quad p_{3}=(-1 / 4,-1 / 16)
$$

(ii)

$$
\begin{aligned}
& f_{x x}=12 x^{2}, \quad f_{y y}=4, \quad f_{x y}=-1, \\
& \Delta(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=48 x^{2}-1, \\
& \Delta\left(p_{1}\right)<0, \quad p_{1} \text { is a saddle point } \\
& \Delta\left(p_{2}\right)>0, \quad f_{x x}\left(p_{2}>0, \quad p_{2}\right. \text { is a local minimum point } \\
& \Delta\left(p_{3}\right)>0, \quad f_{x x}\left(p_{3}>0, \quad p_{3}\right. \text { is a local minimum point }
\end{aligned}
$$

(iii) No. Since $\lim _{x \rightarrow \infty} f(x, 0)=\infty$, the function has no global maximum.
(iv) Yes. When $|x|$ and $|y|$ are very large, f behaves like $x^{4}+y^{2}$, so the function does not go to $-\infty$ and hence is bounded from below. Then one of the local minimum points must be the global minimum. In fact from symmetry both local minimum points give the global minimum value of f.

Here is another way to see that f is bounded from below. First observe that

$$
f(x, y)=x^{4}+2 y^{2}-x y=\left(\sqrt{2} y-\frac{x}{2 \sqrt{2}}\right)^{2}+x^{2}\left(x^{2}-\frac{1}{8}\right) .
$$

Let

$$
g(x, y)=\left(\sqrt{2} y-\frac{x}{2 \sqrt{2}}\right)^{2} \text { and } h(x)=x^{2}\left(x^{2}-\frac{1}{8}\right) .
$$

Minimum value of f will be attained when $g=0$ and h is minimum.

$$
h^{\prime}(x)=4 x\left(x-\frac{1}{4}\right)\left(x+\frac{1}{4}\right)=0 \text { when } x=0, \frac{1}{4},-\frac{1}{4} .
$$

Then

$$
h(0)=0, \quad h\left(\pm \frac{1}{4}\right)=-\frac{1}{256} .
$$

Also

$$
g\left(\pm \frac{1}{4}, y\right)=0 \text { when } y= \pm \frac{1}{16} .
$$

Hence finally

$$
f\left(\pm \frac{1}{4}, \pm \frac{1}{16}\right)=-\frac{1}{256}
$$

is the absolute minimum of f.
Here is the graph of $h(x)=x^{2}\left(x^{2}-\frac{1}{8}\right)$.

