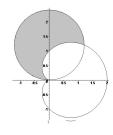


- **Q-1**) Let $\alpha = \sqrt{2} + 1$. The circle $r = \alpha \sin \theta$, $0 \le \theta \le \pi$, and the cardioid $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$, intersect at two points one of which is $(0, \pi)$ in polar coordinates.
 - (i) Find the other intersection point.
 - (ii) Write a double integral which calculates the area inside the circle but outside the cardioid.
 - (iii) Find the exact value of this area by evaluating your double integral.

Grading: (i) 3 points, (ii) 5 points, (iii) 2 points.



Solution:

(i) By solving $\alpha \sin \theta = 1 + \cos \theta$ we find that $\tan \frac{\theta}{2} = \frac{1}{\alpha}$. From the formula

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

by taking $a = b = \theta/2$, we find that $\tan \theta = 1$ and hence $\theta = \pi/4$ is the solution in the given range of θ .

(ii) Area of the shaded region is
$$A = \int_{\pi/4}^{\pi} \int_{1+\cos\theta}^{\alpha\sin\theta} r \, dr d\theta$$
.

(iii)

$$A = \int_{\pi/4}^{\pi} \left(\frac{\alpha^2}{2}\sin^2\theta - \frac{1}{2}(1+\cos\theta)^2\right) d\theta$$

= $\int_{\pi/4}^{\pi} \left(\left(\frac{\alpha^2-3}{4}\right) - \left(\frac{\alpha^2+1}{4}\right)\cos 2\theta - \cos\theta\right) d\theta$
= $\left(\left(\frac{\alpha^2-3}{4}\right)\theta - \left(\frac{\alpha^2+1}{8}\right)\sin 2\theta - \sin\theta\Big|_{\pi/4}^{\pi}\right)$
= $\frac{\alpha^2-3}{4} \cdot \frac{3\pi}{4} + \frac{\alpha^2+1}{8} + \frac{1}{\sqrt{2}}$
= $\frac{3\sqrt{2}\pi}{8} + \frac{1}{2} + \frac{3\sqrt{2}}{4} \approx 3.23.$