Bilkent University
Quiz \# 06
Math 102-Section 10 Calculus II
28 March 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $\alpha=\sqrt{2}+1$. The circle $r=\alpha \sin \theta, 0 \leq \theta \leq \pi$, and the cardioid $r=1+\cos \theta, 0 \leq \theta \leq 2 \pi$, intersect at two points one of which is $(0, \pi)$ in polar coordinates.
(i) Find the other intersection point.
(ii) Write a double integral which calculates the area inside the circle but outside the cardioid.
(iii) Find the exact value of this area by evaluating your double integral.

Grading: (i) 3 points, (ii) 5 points, (iii) 2 points.

Solution:

(i) By solving $\alpha \sin \theta=1+\cos \theta$ we find that $\tan \frac{\theta}{2}=\frac{1}{\alpha}$. From the formula

$$
\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b}
$$

by taking $a=b=\theta / 2$, we find that $\tan \theta=1$ and hence $\theta=\pi / 4$ is the solution in the given range of θ.
(ii) Area of the shaded region is $A=\int_{\pi / 4}^{\pi} \int_{1+\cos \theta}^{\alpha \sin \theta} r d r d \theta$.
(iii)

$$
\begin{aligned}
A & =\int_{\pi / 4}^{\pi}\left(\frac{\alpha^{2}}{2} \sin ^{2} \theta-\frac{1}{2}(1+\cos \theta)^{2}\right) d \theta \\
& =\int_{\pi / 4}^{\pi}\left(\left(\frac{\alpha^{2}-3}{4}\right)-\left(\frac{\alpha^{2}+1}{4}\right) \cos 2 \theta-\cos \theta\right) d \theta \\
& =\left(\left(\frac{\alpha^{2}-3}{4}\right) \theta-\left(\frac{\alpha^{2}+1}{8}\right) \sin 2 \theta-\left.\sin \theta\right|_{\pi / 4} ^{\pi}\right) \\
& =\frac{\alpha^{2}-3}{4} \cdot \frac{3 \pi}{4}+\frac{\alpha^{2}+1}{8}+\frac{1}{\sqrt{2}} \\
& =\frac{3 \sqrt{2} \pi}{8}+\frac{1}{2}+\frac{3 \sqrt{2}}{4} \approx 3.23
\end{aligned}
$$

